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Abstract: White matter tractogarphy is a non-invasive 
method for reconstructing three dimensional fibre 
pathways of the brain. Several fibre tracking algorithms 
have been proposed for this purpose. To evaluate and 
compare these algorithms, it is required to use synthetic 
datasets for which the simulated pathways are known to 
the user. This paper describes an algorithm designed in 
Matlab to simulate a diffusion tensor digital phantom 
for evaluating white matter fibre tractography 
algorithms and assessing their ability to detect fibre 
crossing. This digital phantom allows quantitative 
assessment of the robustness of fibre tracking 
algorithms by varying the thickness, the angles between 
crossing fibres, the Fractional Anisotropy ( FA) value of 
synthetic paths, and background.           
 
Keywords: Diffusion Tensor Imaging (DTI), fibre 
tractography, digital phantom, simulation, 
evaluation, crossing fibres.  
 
 
 
1 Introduction 
 
     Diffusion Tensor Imaging (DTI) is a non-
invasive tool to measure random motion of water 
molecules called diffusion or “Brownian motion”.       

In isotropic environments, the molecules move 
equally in all directions but diffusion is restricted 
in anisotropic regions. Brain white matter is an 
anisotropic tissue containing axons of neurons. The 
myelin sheet of axons restricts motion of the water 
molecules. In white matter, groups of axons bundle 
together and construct tracts. Diffusion in the 
direction parallel to these tracts is at least twice 
faster than in the perpendicular directions [3]. One 
of the most important applications of   diffusion 
tensor imaging is white matter tractography, which 
non-invasively reconstructs a three dimensional 
trajectory of the white matter fibre pathways.  

  Diffusion properties of the neural pathways 
can be obtained by this imaging technique, where a 
symmetric 2nd-order tensor is assigned to each 
image voxel. The principal eigenvalue of each 
voxel’s tensor represents the direction of white 
matter fibre bundles. Measures of the diffusion 
tensor can be used to investigate brain white matter 
pathways development and help for neurosurgical 
planning. This derived information can be used to 
assess neurological diseases like Multiple 
Sclerosis, Schizophrenia, Alzheimer, and Epilepsy 
[5]. 
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In recent years, several tractography algorithms 
have been proposed to reconstruct the neural 
pathways and to find white matter tracts 
connecting different brain regions. However, due 
to the limitations of the diffusion tensor imaging, 
e.g., the partial volume effect, some of these 
tractography algorithms are unable to detect 
correct pathways in crossing and branching fibres. 
In crossing fibres, the voxels containing multiple 
fibre bundles with different orientations, do not 
represent the main diffusion direction. A reliable 
algorithm is the one that correctly find the fibres in 
these regions.  

In order to evaluate the ability and robustness 
of different white matter tractography algorithms, 
it is recommended to use simulated DTI data, in 
which its synthetic tracts are known. 
      Basser et al. [7] generated a two dimensional 
diffusion tensor dataset containing several rings 
with different radius of curvature. Two three 
dimensional simulated dataset were generated by 
Tournier et al. [8]. One of them had a half cylinder 
shape and another one was a fibre that 
reconstructed a semicircular path. Ning Kang et al. 
[9] simulated three single-turn helical fibre bundles 
in a three dimensional volume. They also 
simulated two straight line fibre bundles which 
crossed each other at the right angle. Staempli et 
al. [10] generated an artificial data which is 
consisted of two intersecting cylinders to assess the 
ability of Advanced Fast Marching algorithm in 
tracking crossing fibres. Some virtually three 
dimensional phantoms were reconstructed in 
kissing and twisting [11] and helical [12,13] shape 
fibres. Leemans et al. [14] simulated a synthetic 
DT-MRI phantom that reconstructed the physical 
properties of a fibre pathway by the Gaussian and 
saturated model. 
    This paper describes an algorithm to simulate a 
synthetic diffusion tensor dataset as a testing 
framework for evaluating the ability of white 
matter fibre tractography algorithms to detect fibre 
crossing. Using this dataset one can assess the 
robustness of any fibre tracking algorithm by 
varying the thickness and angles between crossing 
fibres. The number of gradient directions and the 
factional anisotropy of the fibre pathways and 
surrounding regions can be varied to obtain 
different simulated diffusion weighted images. 
Different levels of noise can be added to the 
diffusion weighted images for quantitative 
evaluation of specified algorithm’s noise 
sensitivity. By generating a sample synthetic 
dataset with constant parameters, one can compare 
several tractography algorithms quantitatively. 

2 Background Theory 
 

To compute diffusion tensor, a raw data source, 
i.e., diffusion weighted images are used. These 
images are sensitive to displacement of proton 
molecules along the axis of applied diffusion 
gradient in Stejskal-Tanner Imaging sequence [1]. 
The amount of signal loss by gradient application 
is given by the Stejskal-Tanner equation [1,2]: 

 

              DggG T222 ||/3]−∆[= δδγ-e0SS        (1) 
 

where S0 is the signal intensity without diffusion 
weighting and S is the signal intensity with 
applying diffusion gradient, γ is the Larmor 
constant, δ is the gradient pulse width, ∆ is the 
time between gradient pulses, |G| is the strength of 
the gradient pulses, g is the applied gradient table 
in three main axis directions  and D is the diffusion 
constant. 

By introducing the b-value, the above equation 
can be written as; 

                     DgbgT
eSS −= 0                       (2) 

where 
 

                 222 ||/3]−∆[= Gb δδγ .                 (3) 
 

In isotropic environment, the diffusion constant 
is scalar, but in anisotropic regions a 2nd-order 
tensor model represents the diffusion. This tensor 
is a 3x3 symmetric matrix, with 6 independent 
elements: 
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This tensor has three eigenvalues and three 

corresponding eigenvectors. As shown in Figure 
1(a), the tensor has equal eigenvalues in isotropic 
regions, whereas in anisotropic environment the 
eigenvalues are not equal and the eigenvector of 
the maximum eigenvalue is the principal 
eigenvector, which determines the preferred 
pathway direction in each voxel. By tracking the 
principal eigenvalues of the voxels, the fibres can 
be extracted from the diffusion weighted images.  
The anisotropic tensor shape with its eigenvalues is 
represented in Figure 1 (b). 

 



 
Figure 1:  Tensor shapes in (a) isotropic and (b) 

anisotropic regions. 
 
By providing non-diffusion image, b value, 

diffusion weighted images, and gradient table, the 
tensor elements of each voxel can be calculated 
using: 

                   )ln(1
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where S  is  the  voxel intensity of each  
diffusion  weighted images and S0  is the voxel 
intensity of non-diffusion image. By solving 
Equation (5), six unknown tensor’s elements (i.e., 
Dxx , Dyy , Dzz , Dxy, Dxz , Dyz) are determined: 
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The eigenvectors and eigenvalues of each voxel 
can be calculated from its tensor. By applying the 
rotation operator on the eigenvector’s matrix, one 
can obtain the rotated tensor’s eigenvector around 
z axis and y axis.   

Using this rotated eigenvectors and the 
corresponding eigenvalues, its symmetric tensor 
can be calculated: 

 

                   Rotated D = VEV 1−                      (8) 
 

where V is the rotated eigenvector’s and E is 
the eigenvalue’s matrix.  

Fractional Anisotropy (FA) of each voxel is 
computed from the following equation: 
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where λ1, λ2, λ3 are three tensor’s eigenvalues 
and the mean diffusivity is determined by:  
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   The FA value is normalized between zero and 
one. The FA value of isotropic regions like grey 
matter is less than 0.25 and for anisotropic regions 
like white matter is greater than 0.25 [16]. 
 
 
3 Methods 

 
For simulating DTI dataset, and generating a 

diffusion tensor digital phantom, we developed an 
algorithm and designed a graphical user interface 
(GUI) in MATLAB environment. The simulated 
diffusion weighted images can also be constructed 
from this DTI dataset.  Figure 2 shows a block 
diagram of the proposed algorithm. 

 
 

 
Figure 2:  Block diagram of the algorithm for generating 

diffusion tensor dig ital phantom 
 
 

 In the first step of the algorithm, the input 
parameters for generating the synthetic paths can 
be entered by the user.  These synthetic fibre 
bundles are multiple circular paths with fibre 
crossings at different angles. In the designed GUI, 
the user can select the number of circular paths as 
well as their thickness and radius. Tensor elements 
of fibres are obtained from real DTI dataset with 
FA value greater than 0.25. The FA value of 
background voxels can also be set less than 0.25. 
For generating each circular path, the tensor of the 
first point can be defined by the selected FA value. 
Eigenvectors and eigenvalues of this tensor are 
calculated. Eigenvectors of next voxels in the 
circular fibre can be obtained from multiplying the 
rotation matrix by the eigrenvector’s matrix. Thus, 
the rotated symmetric tensor can be computed by 
eigenvectors and the corresponding eigenvalues. 

To add a crossing fibre, its location is chosen 
by selecting the number of crossing fibres, e.g.,  
for 8 crossings, the circular path is divided to eight 
parts and the crossing fibre’s locations are selected. 
The tensor of this location is obtained, and the 
required crossing fibres are constructed with the 
ordered angle, thickness, and FA value. Figure 3 
schematically shows a circular path with 6 crossing 
fibres, where the principal direction of each 
voxel’s tensor represents by colour coding in all 
three directions in space as shown in the upper 
right corner of the figure. The input parameters of 
crossing fibres can be entered by user. In the 
represented synthetic dataset the angles are 

Choose 
input 

Generate 
DTI 

Add noise 

Compute 
DW 

Reconstruct 
DTI data  



defined, °°°°°° 15,30,45,60,75,90 and then the 
crossing fibres are constructed, respectively in the 
counter clockwise direction. The suggested seed 
point for implementing tractography is also shown 
in this figure. For example, a tractography method 
may detect all crossing angles greater than °45 but 
not less than °30 .     

 

 
 
 
 

After generating the simulated DTI dataset, the 
simulated diffusion weighted images can be 
constructed. In this step, by selecting the gradient 
directions, the same number of diffusion weighted 
images is obtained from the simulated DTI dataset 
using Equation (2). Gaussian noise with different 
standard deviations [6] can be added to the 
diffusion weighted images to prepare the desired 
signal-to-noise ratio (SNR) for evaluation of the 
noise sensitivity of algorithms. Using this 
simulated diffusion weighted images and the 
corresponding gradient table, the DTI dataset can 
be reconstructed by Equation (3).  

For generating a testing DTI data with real 
background and simulated fibre pathways, tensors 
of the simulated pathways can replace the 
corresponding voxel’s tensors in real DTI data. 
Figure 4 shows the block diagram of the algorithm 
for generating this synthetic data.  

 
 
 
 
 

 
Figure 4:  Block diagram of the algorithm for generating 

synthetic DTI data with real background. 

 To implement this, first the real DTI data is 
computed using raw dataset by Equation (5), and 
in the other hand the synthetic fibres is generated. 
Then the synthetic fibre’s voxels are embedded in 
the real DTI data. Using this artificial data, one can 
prepare the simulated diffusion weighted images. 
By adding noise to these images, the noisy 
simulated DTI dataset can be generated. 

 For generating more realistic synthetic fibre, 
we extracted a tract from a human brain’s DTI 
data. This tract is thinned to one voxel thickness. 
Tensors with the selected FA value are assigned to 
its voxels. By the way for increasing the thickness 
of this fibre, a binary kernel consisted of a white 
sphere within a black background is convolved to 
this tract. The diameter of this sphere sets the 
thickness of the fibre. The principal eigenvector of 
each voxel’s tensor is the connection vector to the 
next voxel. Eigenvalue’s matrix set by the selected 
FA value, and corresponding tensor is formed. 
      In order to constructing a realistic crossing 
fibre, we rotated this pathway with the arbitrary 
angle and then added it to the first one. All the 
tensors in the crossing region are sum of the 
tensors of paths which crossed each other. Figure 5 
schematically shows a realistic fibre crossing. 
 

 
Figure 5: A realistic with °30 intersection angle. 

 
 

4 Results 
 

   The designed user interface is able to 
construct the simulated DTI data and display the 
corresponding diffusion weighted images. This 
GUI prepares three types of DTI datasets: 

1. Real data 
2. Simulated data 
3. Real plus simulated data 

      Figure 6 shows the appearance of this GUI. By 
selecting each of the above dataset, the required 
parameters can be acquired from the user and then 
the dataset will be reconstructed. The diffusion 
weighted images will be shown in the image 
viewer part. These images can be saved in dicom 
format for easy conversion and loading in any fibre 
tractography and DTI analyzing software.

Embed digital phantom 
voxels in real DTI data 

Reconstruct DTI data  

Add noise 

Compute simulated 
DW images  

Choose the input 
parameters 

Choose the input 
DW raw data   

Generate DT 
digital phantom 

Generate real DTI 
data  

Figure 3:  A circular path with 6 crossing fibres. Colour 
coding scheme is shown in upper right of the figure. 



 
 

Figure 6:    A view of the developed graphical user interface. 
 
 
 
 

4.1    Real data 
  By selecting the real data in GUI, a real DWI 

data with the chosen number of gradient direction 
is loaded and the DTI data is generated from this 
dataset using Equation (5). Gaussian noise with 
desired standard deviation can be added to the 
diffusion weighted images, thus the noisy DTI data 

can be reconstructed from them. Figure 7 shows 
real diffusion weighted images which are loaded in 
Image Viewer of the GUI. This real raw data is 
loaded in FSL [17] and the colour coded DTI 
dataset and the principal eigenvectors are shown in 
Figures 8 (a) and (b), respectively. 

 
 

 
 

Figure 7: Real diffusion weighted image with 6 gradient directions and without noise. 



    
 

Figure 8:   (a) View of colour coded DTI data, and (b) View of principal eigenvectors in the FSLview. 
 
 
 

4.2    Simulated data 
Once the simulated data is selected, the 

synthetic circular fibre pathways can be generated 
by user’s input parameters and for any number of 
crossing fibres, the crossing’s places are 
determined and the tensor of these voxels are 
selected. The parameters of each crossing (e.g. the 
FA value, thickness, and angles) are entered and 
the crossing fibres can be generated. 

This section follows the algorithm described 
schematically in Figure 2. In this step, we have a 
synthetic DTI data and for the next stage diffusion 
weighted images are computed from this DTI data 
using Equation (2). The number of acquired 
diffusion weighted images is determined by the 
number of gradient directions. Gaussian noise can 

be added to these diffusion weighted images. 
Using diffusion weighted images and gradient 
direction the DTI data can be reconstructed by 
Equation (5).  

By the defined input parameters shown in 
Figure 9(a), a three dimensional digital phantom 
can be constructed and the simulated diffusion 
weighted images are generated in dicom format. 
These dicom images are converted in NIFTI 
format and loaded in FSL. A view of the FSL 
results of colour coded DTI data and diffusion 
fitting by principal eigenvectors are shown 
respectively in Figures 9(b) and (c). As this result 
represents the eigenvectors are correctly matched 
to their paths. 

 

 
 

            
 

        Figure  9:   (a) Input parameters for creating a 3D diffusion tensor digital phantom. (b)  View of 
colour coded DTI data, and (c) View of principal eigenvectors in FSLview. 
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Figure 10:  3D simulated tracts that are embedded in real data which is shown in Figure 8.  The synthetic 
tracts can be seen in  (a) colour coded DTI data.  (b) View of principal eigenvectors in FSLview. 

 
 
 

4.3    Real plus simulated data 
By choosing real+simulated data in the 

designed GUI, the algorithm illustrated in the 
block diagram of Figure 5 is executed. The DTI 
data is generated from real diffusion weighted 
images and the simulated tensors are inserted in the 
corresponding locations in the real data. The 
simulated diffusion weighted images with their 
gradient table are loaded in FSL. The result of this 
part is shown in Figure 9. As shown in this figure, 
the simulated DTI dataset has a real background 
that the artificial fibre pathways are embedded in 
it. Like the previous sections, noise can be added 
to the diffusion weighted data and noisy DTI 
dataset can be reconstructed. The resulting data is 
used for testing the noise sensitivity of the 
algorithms.  

 

Fibre tracking results 
We use probabilistic tractography algorithm 

[18] and fast marching algorithm [19] for 
implementing fibre tracking on this simulated data. 

As shown in figure 11(a) fast marching 
algorithm detects all the crossing fibres, whereas 
probabilistic algorithm is unable to detect the 
crossing region. Figure 11(b) illustrates that the 
tracking is cut in crossing regions and unable to 
continue the pathway. 

Results of fibre tracking on the more realistic 
synthetic fibres are also shown in Figures 11(c), 
(d). All the pathways which crossed from the 
intersection regions are detected using fast 
marching algorithm, whereas probabilistic 
tractography only detect a pathway after crossing 
region. 

 
 
 

                                          
 

                                                      
 

 

Figure 11: 2D display of fibre tracking result on simulated fibres using (a) Probabilistic tractography algorithm, (b)Fast 
Marching algorithm. 3D display of fibre tracking result on more realistic synthetic fibres using (c) Probabilistic 

tractography algorithm, (d) Fast Marching algorithm. * symbol in each figure represents the seed point. 

a b 

b a 

c d 

* * 

* * 



5 Conclusion 
 
This proposed simulated dataset can be used as 

a quantitative testing framework for evaluating the 
robustness, noise sensitivity, and performance of 
DTI fibre tractography algorithms. Using this 
simulated dataset, we assessed how a true crossing 
can be detected in different conditions such as 
background noise, fibre’s FA value and 
background environment, crossing angle, and 
thickness. 

Using real diffusion weighted data, for the 
background of the image, the synthetic fibres are 
embedded in the real environment, and thus a 
dataset with real background can be constructed.    

The resulting simulated diffusion weighted 
images are saved in a DICOM format so that they 
can be used in different fibre tracking software.   
  After converting the simulated raw data to NIFTI 
format, we tested this digital phantom in FSL. As 
shown in Figure 9(c) and Figure 10(b), principal 
eigenvectors are correctly fitted to this data.  
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