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Abstract: White matter tractogarphy is a non-invasive
method for reconstructing three dimensional fibre
pathways of the brain. Several fibre tracking algorithms
have been proposed for this purpose. To evaluate and
compare these algorithms, it is required to use synthetic
datasets for which the simulated pathways are known to
the user. This paper describes an algorithm designed in
Matlab to smulate a diffusion tensor digital phantom
for evaluating white matter fibre tractography
algorithms and assessing their ability to detect fibre
crossing. This digital phantom allows quantitative
assessment  of the robustness of fibre tracking
algorithms by varying the thickness, the angles between
crossing fibres, the Fractional Anisotropy ( FA) value of
synthetic paths, and background.

Keywords:. Diffusion Tensor Imaging (DTI), fibre
tractography, digital phantom, smulation,
evaluation, crossing fibres.

1 Introduction

Diffusion Tensor Imaging (DTI) is a non-
invasive tool to measure random motion of water
molecules called diffusion or “Brownian motion”.

In isotropic environments, the molecules move
equaly in all directions but diffusion is restricted
in anisotropic regions. Brain white matter is an
anisotropi ¢ tissue containing axons of neurons. The
myelin sheet of axons restricts motion of the water
mol ecules. In white matter, groups of axons bundle
together and construct tracts. Diffusion in the
direction parale to these tracts is at least twice
faster than in the perpendicular directions [3]. One
of the most important applications of  diffusion
tensor imaging is white matter tractography, which
non-invasivey reconstructs a three dimensiona
trgjectory of the white matter fibre pathways.

Diffusion properties of the neura pathways
can be obtained by this imaging technique, where a
symmetric 2™-order tensor is assigned to each
image voxd. The principal eigenvalue of each
voxd’s tensor represents the direction of white
meatter fibre bundies. Measures of the diffusion
tensor can be used to investigate brain white matter
pathways development and hdp for neurosurgica
planning. This derived information can be used to
assess  heurological  diseases like Multiple
Sclerosis, Schizophrenia, Alzheimer, and Epilepsy
[5].
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In recent years, severa tractography agorithms
have been proposed to reconstruct the neurd
pathways and to find white matter tracts
connecting different brain regions. However, due
to the limitations of the diffusion tensor imaging,
e.g., the partid volume effect, some of these
tractography agorithms are unable to detect
correct pathways in crossing and branching fibres.
In crossing fibres, the voxes containing multiple
fibre bundles with different orientations, do not
represent the main diffusion direction. A rdiable
algorithm is the one that correctly find the fibresin
these regions.

In order to evaluate the ability and robustness
of different white matter tractography algorithms,
it is recommended to use simulated DTI data, in
which its synthetic tracts are known.

Basser et d. [7] generated a two dimensiona
diffusion tensor dataset containing several rings
with different radius of curvature. Two three
dimensional simulated dataset were generated by
Tournier e a. [8]. One of them had a half cylinder
shape and another one was a fibre that
reconstructed a semidircular path. Ning Kang et al.
[9] simulated three single-turn helical fibre bundles
in a three dimensiona volume. They also
simulated two straight line fibre bundies which
crossed each other at the right angle Staempli &
a. [10] generated an artifical data which is
consisted of two intersecting cylinders to assess the
ability of Advanced Fast Marching agorithm in
tracking crossing fibres. Some virtualy three
dimensonal phantoms were reconstructed in
kissing and twisting [11] and helica [12,13] shape
fibres. Leemans et al. [14] simulated a synthetic
DT-MRI phantom that reconstructed the physica
properties of a fibre pathway by the Gaussian and
saturated mode.

This paper describes an algorithm to simulate a
synthetic diffusion tensor dataset as a testing
framework for evauating the ability of white
matter fibre tractography algorithms to detect fibre
crossing. Using this dataset one can assess the
robustness of any fibre tracking agorithm by
varying the thickness and angles between crossing
fibres. The number of gradient directions and the
factional anisotropy of the fibre pathways and
surrounding regions can be varied to obtain
different simulated diffusion weighted images.
Different levels of noise can be added to the
diffusion weighted images for quantitative
evaluation of gpecified agorithm’s noise
sensitivity. By generating a sample synthetic
dataset with constant parameters, one can compare
severd tractography algorithms quantitatively.

2 Background Theory

To compute diffusion tensor, a raw data source,
i.e, diffusion weghted images are used. These
images are sensitive to displacement of proton
molecules dong the axis of applied diffuson
gradient in Stejskal-Tanner Imaging sequence [1].
The amount of signal loss by gradient application
is given by the Stejskal-Tanner equation [1,2]:
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where & is the signal intensity without diffusion
weghting and S is the signa intensity with
goplying diffuson gradient, y is the Larmor
constant, & is the gradient pulse width, A is the
time between gradient pulses, |G| is the strength of
the gradient pulses, g is the applied gradient table
in three main axis directions and D is the diffusion
constant.
By introducing the b-value, the above equation
can be written as;
S=9Spe" bgT Dg (2)

where
b=g’d’[D- d3|G . 3

In isotropic environment, the diffusion constant
is scalar, but in anisotropic regions a 2"-order
tensor model represents the diffusion. This tensor
is a 3x3 symmetric matrix, with 6 independent
dements:
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This tensor has three eigenvalues and three
corresponding egenvectors. As shown in Figure
1(a), the tensor has equal eigenvalues in isotropic
regions, whereas in anisotropic environment the
eégenvalues are not equa and the eigenvector of
the maximum egenvaue is the principa
g@genvector, which deermines the prefered
pathway direction in each voxd. By tracking the
principal eigenvaues of the voxels, the fibres can
be extracted from the diffusion weighted images.
The anisotropi ¢ tensor shape with its eigenvaluesis
represented in Figure 1 (b).



Figure 1: Tensor shapesin (a) isotropic and (b)
anisotropic regions.

By providing non-diffusion image, b value
diffusion weighted images, and gradient table, the
tensor eements of each voxed can be calculated
using:
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where S is the voxd intensity of each
diffusion weighted images and S, is the voxd
intensity of non-diffusion image. By solving
Equation (5), sx unknown tensor’s dements (i.e.,
Dy« ; Dyy , Dz, Dyy, Dy, , Dy,) are determined:
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The eigenvectors and el genval ues of each voxe
can be calculaed from its tensor. By applying the
rotation operator on the eigenvector's matrix, one
can obtain the rotated tensor’s eigenvector around
zaxisand y axis.

Using this rotated eigenvectors and the
corresponding eigenvalues, its symmetric tensor
can be calcul ated:

Rotated D =v'E v (8)

where V is the rotated eigenvector's and E is
the eigenval ue s matrix.

Fractiona Anisotropy (FA) of each voxd is
computed from the following equation:

\/3(|1 an2+(l,-an°+(;-40 )
J202+12412)
where A4, Ay, A3 are three tensor’s e genvalues
and the mean diffusivity is determined by:

L s l1+lo+13
a”‘T. (10)

The FA value is normalized between zero and
one. The FA vaue of isotropic regions like grey
matter is less than 0.25 and for anisotropic regions
like white matter is greater than 0.25 [16].

3 Methods

For simulating DTI dataset, and generating a
diffusion tensor digital phantom, we developed an
agorithm and designed a graphical user interface
(GUI) in MATLAB environment. The simulated
diffusion weighted images can aso be constructed
from this DTI dataset. Figure 2 shows a block
diagram of the proposed agorithm.

C_hoose N Generate N Compute
Input DTI DW
|—> Add noise ||  Reconstruct
DTI data

Figure 2: Block diagram of the algorithm for generating
diffusion tensor digital phantom

In the first step of the agorithm, the input
parameters for generating the synthetic paths can
be entered by the user. These synthetic fibre
bundies are multiple circular paths with fibre
crossings at different angles. In the designed GUI,
the user can select the number of circular paths as
wdl| as their thickness and radius. Tensor & ements
of fibres are obtained from real DTI dataset with
FA vaue greater than 0.25. The FA vaue of
background voxels can aso be set less than 0.25.
For generating each circular path, the tensor of the
first point can be defined by the sdlected FA value.
Eigenvectors and eigenvalues of this tensor are
caculated. Eigenvectors of next voxds in the
drcular fibre can be obtained from multiplying the
rotation matrix by the eigrenvector’s matrix. Thus,
the rotated symmetric tensor can be computed by
e genvectors and the corresponding e genval ues.

To add a crossing fibre, its location is chosen
by sdecting the number of crossing fibres, eg.,
for 8 crossings, the dircular path is divided to eight
parts and the crossing fibre' s locations are sel ected.
The tensor of this location is obtained, and the
required crossing fibres are constructed with the
ordered angle, thickness, and FA vaue. Figure 3
schematicdly shows a circular path with 6 crossing
fibres, where the principal direction of each
voxe’s tensor represents by colour coding in al
three directions in space as shown in the upper
right corner of the figure. The input parameters of
crossing fibres can be entered by user. In the
represented synthetic dataset the angles are



defined, 90", 75, 60°, 457, 30, 15 and then the
crossing fibres are constructed, respectively in the
counter clockwise direction. The suggested seed
point for implementing tractography is also shown
in this figure. For example, a tractography method

may detect all crossing angles greater than 45 but
not lessthan 30°.
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Figure 3: A circular path with 6 crossing fibres. Colour
coding scheme is shown in upper right of the figure.

After generating the simulated DTI dataset, the
simulated diffusion weighted images can be
constructed. In this step, by seecting the gradient
directions, the same number of diffusion weighted
images is obtained from the simulated DTI dataset
using Equation (2). Gaussian noise with different
standard deviations [6] can be added to the
diffusion weighted images to prepare the desired
signal-to-noise ratio (SNR) for evaluation of the
noise sensitivity of agorithms. Using this
simulated diffusion weighted images and the
corresponding gradient table, the DTI dataset can
be reconstructed by Equation (3).

For generating a testing DTl data with red
background and simulated fibre pathways, tensors
of the simulated pathways can replace the
corresponding voxe’s tensors in real DTl data
Figure 4 shows the block diagram of the algorithm
for generating this synthetic data

Choose the input Choose the input
parameters DW raw data
L 2 v
Generate DT Generate real DTI
digital phantom data

Embed digital phantom
voxelsinrea DTI data
v

Compute s mulated
NDW imanes

| Reconstruct DTI data |

Figure 4: Block diagram of the algorithm for generating
synthetic DTI datawith real background.

To implement this, first the red DTI data is
computed using raw dataset by Equation (5), and
in the other hand the synthetic fibres is generated.
Then the synthetic fibre's voxds are embedded in
thereal DTI data. Using this artificial data, one can
prepare the simulated diffusion weighted images.
By adding noise to these images, the noisy
simulated DT dataset can be generated.

For generating more redlistic synthetic fibre,
we extracted a tract from a human brain's DTI
data. This tract is thinned to one voxe thickness.
Tensors with the selected FA value are assigned to
its voxels. By the way for increasing the thickness
of this fibre, a binary kernel consisted of a white
sphere within a black background is convolved to
this tract. The diameter of this sphere sets the
thickness of the fibre. The principa e genvector of
each voxd’s tensor is the connection vector to the
next voxe. Eigenvalue' s matrix set by the selected
FA value, and corresponding tensor is formed.

In order to constructing a redistic crossing
fibre, we rotated this pathway with the arbitrary
angle and then added it to the first one. All the
tensors in the crossing region are sum of the
tensors of paths which crossed each other. Figure 5
schematicaly shows arealistic fibre crossing.

Figure5: A redlistic with 30” intersection angle.

4 Results

The designed user interface is able to
construct the simulated DTI data and display the
corresponding diffusion weighted images. This
GUI prepares three types of DTI datasets:

1. Red data

2. Simulated data

3. Red plus simulated data

Figure 6 shows the appearance of this GUI. By
sdecting each of the above dataset, the required
parameters can be acquired from the user and then
the dataset will be reconstructed. The diffusion
weghted images will be shown in the image
viewer part. These images can be saved in dicom
format for easy conversion and loading in any fibre
tractography and DTl andyzing software.
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Figure6: A view of the devel oped graphical user interface.
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4.1 Real data

By sdecting the real datain GUI, ared DWI
data with the chosen number of gradient direction
is loaded and the DTI data is generated from this
dataset using Equation (5). Gaussian noise with
desired standard deviation can be added to the
diffusion weighted images, thus the noisy DTI data
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can be reconstructed from them. Figure 7 shows
red diffusion weighted images which areloaded in
Image Viewer of the GUI. This red raw data is
loaded in FSL [17] and the colour coded DTI
dataset and the principal eigenvectors are shown in
Figures 8 (a) and (b), respectively.
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Figure 7: Redl diffusion weighted image with 6 gradient directions and without noise.



Figure 8: (@) View of colour coded DTI data, and (b) View of principa eigenvectorsin the FSLview.

4.2 Simulated data

Once the simulated data is sdected, the
synthetic circular fibre pathways can be generated
by user’s input parameters and for any number of
crossing fibres, the crossing's places are
determined and the tensor of these voxels are
selected. The parameters of each crossing (e.g. the
FA value, thickness, and angles) are entered and
the crossing fibres can be generated.

This section follows the algorithm described
schematically in Figure 2. In this step, we have a
synthetic DTI data and for the next stage diffusion
weighted images are computed from this DTI data
using Equation (2). The number of acquired
diffusion weighted images is determined by the
number of gradient directions. Gaussian noise can

radius of circular paths:
thickness of circular paths:
number of crossing fibers:
thickness of fibers:

angle between fibers:

in which slices?

FA of the hackground:

FA of circular paths:

FA crossing fibers:

number of gradient directions:

standard deviation of noise:

be added to these diffusion weighted images.
Using diffusion weighted images and gradient
direction the DTI data can be reconstructed by
Equation (5).

By the defined input parameters shown in
Figure 9(a), a three dimensiona digital phantom
can be constructed and the simulated diffusion
weghted images are generated in dicom format.
These dicom images are converted in NIFTI
format and loaded in FSL. A view of the FSL
results of colour coded DTl data and diffusion
fitting by principal egenvectors are shown
respectively in Figures 9(b) and (c). As this result
represents the eigenvectors are correctly matched
to ther paths.

Figure 9: (a) Input parameters for creating a 3D diffusion tensor digital phantom. (b) View of
colour coded DTI data, and (c) View of principal eigenvectorsin FSLview.



4.3 Real plussmulated data

By choosing red+simulated data in the
designed GUI, the agorithm illustrated in the
block diagram of Figure 5 is executed. The DTI
data is generated from red diffusion weighted
images and the simulated tensors areinserted in the
corresponding locations in the real data. The
simulated diffusion weighted images with ther
gradient table are loaded in FSL. The result of this
part is shown in Figure 9. As shown in this figure,
the simulated DTI dataset has a real background
that the artificial fibre pathways are embedded in
it. Like the previous sections, noise can be added
to the diffusion weighted data and noisy DTI
dataset can be reconstructed. The resulting data is
used for testing the noise sensitivity of the
algorithms.

Cil v
c N:O

Figure 10: 3D smulated tracts that are embedded i

d

n real datawhich isshown in Figure 8. The synthetic
tracts can be seenin (a) colour coded DTI data. (b) View of principal eigenvectorsin FSLview.

Fibretracking results

We use probabiligtic tractography agorithm
[18] and fast marching dgorithm [19] for
impl ementing fibre tracking on this simulated data.

As shown in figure 11(a) fast marching
agorithm detects al the crossing fibres, whereas
probabilistic algorithm is unable to detect the
crossing region. Figure 11(b) illustrates that the
tracking is cut in crossing regions and unable to
continue the pathway.

Results of fibre tracking on the more redistic
synthetic fibres are also shown in Figures 11(c),
(d). All the pathways which crossed from the
intersection regions are detected using fast
marching algorithm, whereas probabilistic

tractography only detect a pathway after crossing
region.

70 0

Figure 11: 2D display of fibre tracking result on simulated fibres using (&) Probabilistic tractography agorithm, (b)Fast
Marching algorithm. 3D display of fibre tracking result on more redlistic synthetic fibres using (c) Probabilistic
tractography algorithm, (d) Fast Marching algorithm. * symbol in each figure represents the seed point.



5 Conclusion

This proposed simulated dataset can be used as
a quantitative testing framework for evaluating the
robustness, noise sensitivity, and performance of
DTI fibre tractography algorithms. Using this
simulated dataset, we assessed how a true crossing
can be detected in different conditions such as
background noise, fibres FA vdue and
background environment, crossing angle, and
thickness.

Using real diffusion weighted data, for the
background of the image, the synthetic fibres are
embedded in the red environment, and thus a
dataset with real background can be constructed.

The resulting simulated diffuson weighted
images are saved in a DICOM format so that they
can be used in different fibre tracking software.

After converting the simulated raw datato NIFTI
format, we tested this digital phantom in FSL. As
shown in Figure 9(c) and Figure 10(b), principa
eigenvectors are correctly fitted to this data.
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