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Abstract: Tomography refers to the cross-sectional 
imaging of an object from either transmission or 
reflection data collected by illuminating the object from 
many different directions. The impact of this technique 
in diagnostic medicine has been revolutionary, since it 
has enabled doctors to view internal organs with 
unprecedented precision and safety to the patient. The 
first medical application utilized x-rays for forming 
images of tissues based on their x-ray attenuation 
coefficient. More recently, however, medical imaging 
has also been successfully accomplished with 
radioisotopes, ultrasound and magnetic resonance; the 
imaged parameter being different in each case. 
But, when an object is illuminated with a diffracting 
source; as is the case with ultrasound and microwaves, 
the wave field is scattered in practically all directions. 
In these cases, there is the problem of lack of efficient 
algorithms to reconstruct a high-quality image. To 
overcome this problem, one approach is to use 
diffraction tomography, which is applicable to 
microwave imaging of biological bodies. 
The proposed research aims at describing how to apply 
the theory to actual problems in medical imaging and 
other fields. Finally, compare some of reconstruction 
examples of permittivity and conductivity with our 
simulation sources. 
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1 Introduction 
 
Noninvasive diagnostics using electromagnetic 
waves are very appealing in several areas of 
industrial applications, which include civil 
engineering, nondestructive testing. Geophysical 
prospecting and biomedical engineering. One 

particular promising technique is the use of 
microwave imaging(MI).This technique relies 
upon the information contained in electromagnetic 
wave at microwave frequencies to reconstruct 
some important parameters (such as shapes, 
locations, etc.) of the objects under test. 
The application of Microwave Imaging (MI) to 
biomedical engineering has many potential 
advantages over existing techniques. It allows one 
to obtain the distribution of the complex dielectric 
permittivity of a tissue, from which biohazard due 
to undesired exposure can be evaluated. One 
important area of applications of MI is concerned 
with the detection of breast cancer. Due to high 
contrast in the dielectric properties between normal 
and malignant breast tissues, MI would result in 
low rate false diagnoses [1]-[3]. In addition, 
diagnostic systems based on MI could be 
considerably cheaper and potentially less harmful. 
However, the use of MI as a reliable medical 
diagnostic still needs further development. MI is 
not at present competitive with other diagnostic 
techniques, in spite of its definite advantages. The 
main problem is lack of efficient algorithms, which 
can derive in real time from microwave data the 
properties of an object under test in 3 dimensions. 
The derivation of such information, from physical 
point of view, is in essence an inverse scattering 
problem. Recasting as an optimization process, one 
may solve inverse problems by the use of 
optimization methods such as gauss-Newton, 
gradient Iterative and Genetic algorithm methods 
[4]-[7]. This approach, known as spatial-iterative, 
gives accurate reconstruction while introduces 
huge computational burden. 
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Therefore, spatial-iterative methods cannot be 
realized in real time and even near-real time with 
the present computing facilities.  
Another approach is to use diffraction tomography 
(DT), an inversion scheme that reconstructs profile 
of a weakly scattering object under Born or Rytov 
approximation. This scheme has been applied to 
widely scientific discipline including 
electromagnetic subsurface surveying [8], [9], 
medical ultrasonic tomography [10] and medical 
optical tomography [11]. Using FFT for obtaining 
the image, such an approach is computationally 
efficient and comparatively straightforward. The 
success of the DT, however, depends on the 
validity of the underlying approximations that 
make the inverse problem linear. It fails to image 
or provide poor reconstruction for objects having 
large discontinuities in the permittivity (strong 
scattering objects) being successful in some          
extent, alternative versions of the DT [12]-[14] 
have been proposed to alleviate this drawback. 
Our aim of this research was to evaluate the merits 
of the DT for microwave imaging (especially for 
breast cancer detection). Direct Fourier (DF) and 
filtered-backpropagation (FBP) algorithms are 
implemented within Matlab environment and 
tested using synthetic data. We generated the data 
on several cylindrical models by an 
electromagnetic simulation software. The results 
and the milestones to reach a practical imaging 
system will be addressed.  

2      Theory and Formulation of the problem 
 

2.1    Diffraction Tomography 
 

Meuller et al [15] initially proposed the 
configuration shown in Figure 1 for a 2-dimensional 
DT imaging. A monochromatic (single time 
frequency) plane wave, having angleφ  with x-axis, 
is incident on an object. The  total field is recorded 
on line TT', outside the object and perpendicular to 
the propagation direction. The system acquires data 
for different angles 1N,0,1,n2ππ/Nnφ −== K .This 
scan scenario, originally, inspire from X-ray 
computerized tomography (CT).  
If we assume scaEincEE += , the scattered field Esca 

on line TT' is obtained by deducting the total field 
from the incident plane wave Einc. Generalized 
projection-slice theorem states: the Fourier 
transform of Esca along line TT' gives the values of 
the 2-D Fourier transform of the object 
function O(r) along semi-circular arc BOA depicted 
in Figure 1(b). In order to illustrate this theorem, 
consider the medium is nonmagnetic( 0µµ = ), 

rε0εε = permittivity,σ conductivity and an incident 
plane wave traveling in direction η+  which is 
formulated as  

η)0exp(jk0E(r)incE =                                           (1) 
                                                      
 

Figure 1: Classical scan configuration of diffraction  tomography. a) space domain. b) frequency  domain 
 

where ),( ηξ denote the rotated (x,y) 
coordinates(Figure 1). The interaction of the 
incident wave with the object results in the 
formation of the wavefield E(r) that satisfies the 
time-independent inhomogeneous Helmholtz 
equation in born approximation  
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The 2-D Green function is given by  
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Inserting Equation(1) and Equation(3) into 2-D 
version of Equation(2), the measured field on line 
TT' can be obtained by replacing η  with l0         
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ℜ defines the scattering region, i.e. 

{ }0),(|),( ≠=ℜ µξηξ O .The double integral inside 
the parentheses in Equation(4) defines 2-D spatial 
Fourier transform of ),( ηξO  at spatial angular 
frequency of )0,( k−γκ . By denoting ),(~ ϑκO  as    
2-D Fourier transform for ),( ηξO , we reach            
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it could be realize that the term bounded by {} in 
Equation (5) provides the 1-D inverse Fourier 
transform of γγγκ /)(),(~

00 ljkO exp− .Therefore  
Taking  Fourier transform of both sides of 
Equation(5) with regards to variableξ  results in 
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Considering 0
22

00 kkk −−=− κγ , as κ varies 

from 0k− to 0k , the coordinates )0,( k−γκ in the 
frequency domain trace out a semi-circular arc in 
the (u, v)- plane as illustrated in Figure 1(b). 
If the scattered field is measured along a line at 

0l−=η , i.e. the reflected field from the object is 
recorded, a similar procedure derives the following 
expression  which for ]0,0[ kk−∈κ , the coordinates 

)0,( k−−γκ are located on semi-circular arc 
BO'A(Figure 1(b)). 
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Hence, the Fourier  transform of the object function 
along BO'A can be obtained using the reflected 
field. In classical DT, the imaging is based on 
Equation (6), i.e. the transmission field 
measurements.  
It is more instructive to rewrite Equation (6) as 
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that clarifies the dependency on the scan angle φ . 
According to Equation (8), the rotation of the 
object from 0φ = to π2φ = yields the 2-D Fourier 
transform of O(x, y) ( ),(~ vuO ) on   disk with radius 

02k . Due to finite number of the scan angles, the 
values of ),(~ vuO can be obtained at some sample 
points on this disk. In order to reconstruct the 
object function from these samples, two algorithms 
have been proposed. The next subsections describe 
them.  
 
2.2 Direct Fourier 

 
The direct Fourier (DF) method finds the object 
function from direct 2-D inversion of the frequency 
domain information. This needs the frequency 
domain samples are available on a rectangular grid 
I (u,v) plane. However, Equation (8) provides the 
samples over circular arcs. Thus, the data on the 
rectangular grid is found with interpolating the 
samples over the arcs. Scanning the angles from 0 
to  π2 , the arcs OA and OB in Figure 1(b) span the 
same disk independently, i.e. there is double 
coverage of the frequency domain. The frequency 
samples for arcs (either OA or OB) are, 
individually, uniform in parameters ),( ϕκ  , 
whereas their combination would not present a 
uniform distribution. As the data should be uniform 
for interpolation, the samples from one arc (either 
OA or OB) will be used. 
For interpolation, one needs a relationship between 
(u,v) and ),( ϕκ . As arcs OA and OB covers the 
same points (double coverage), there would be two 
separate relationships. Let ),( 11 ϕκ and ),( 22 ϕκ  
denote the points generated by OA and OB, 
respectively, and let us convert (u,v) to polar 
coordinates ),( θw  as 
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With regard to Figure 1(b), ),( 11 ϕκ is given by [16] 
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The algorithm may use different 2-D interpolation 
techniques, such as nearest neighbour, spline and 
the interpolation based on circular sampling  
theorem. The bilinear interpolation, however, has 
proved to be computationally efficient and give 
good reconstruction [16]. Based on the DF 
algorithm, a Matlab program has been prepared 
which  implements the zero-padding technique as 
well; and allows the user specify the amount of 
increase in the density. The reconstruction 
examples will be presented in Section3. 
  
2.3 Filtered-BackPropagation 
 
Devaney [17] has derived filtered-backpropagation 
(FBP) method, which is similar to the filtered 
backprojection technique in X-ray tomography. 
The FBP algorithm has demonstrated to provide 
the best reconstruction, but it is computationally 
less efficient than DF technique. 
Let obtain the object function from its 2-D 
frequency components 

∫∫ += dvdujyvjxuexpvuOyxO )(),(~
24
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In FBP formulation, the above integral is written in 
terms of ),( ϕκ parameters. This is done first by the 
change of (u,v) to polar coordinates with regard to 
Equations (9) and (10). Also we assume the 
samples are, only, available on a disk with radius 

02k . Then, replace (x,y) with the rotated 
coordinates ),( ηξ ( 1ϕ  rotation). That is  
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Substitution the changes in Equation (12) and also 
to reduce the effect of noise assume both arcs OA 
and OB have the same angles, i.e. ϕϕϕ == 21 ,and 

κκκ −=−= 12 results in 
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where 
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The expression inside square parenthesis in 
Equation(14) defines 1-D inverse Fourier transform 

of H~ . Denoting  H as Fourier inversion of H~ and 
considering 

ϕϕηϕϕξ sinxycos,sinycosx −=+=                  (16) 
the reconstruction equation can be expressed as 
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The dependency of H~ on η reveals that several 1-D 
Fourier inversion are required so as to attain H for 
a given ),( ηξ grid, making the FBP algorithm 
computationally expensive. Nevertheless, the FBP 
can find O(x,y) in any specific region; this could 
computation burden if the region is small in some 
applications. 
A Matlab program has been written for 
implementation of the FBP algorithm. The 
reconstruction examples will be presented in the 
next subsection. 
 
3      Reconstruction Examples 
 
The following examples are aimed at the 
evaluation of the DT using both DF and FBP 
algorithms. By using an electromagnetic simulation 
software the scattered field data generated on 2-D 
models. Since, the simulations take a considerable 
amount of time, the models are chosen to have 
cylindrical symmetry, which means the models 
(objects) properties vary only with radial distance 
from the object centre. For all reconstruction 
examples, the scan angles are   

,710,1,n2ππ/7nn K== ,φ  that means 
5n =∆ϕ degree. Also, the background medium is 

presumably free space ( 1=Brε ), unless it is 
specified. Due to the symmetry of circular 
cylinders, the figures show the profile of either 
relative permittivity )( rε or conductivity along the 
diameter of the cylinders. Additionally, to discuss 
the results, we need the definition of two error 
appear in the reconstructions: 1- the error due to 
the lack of enough resolution that is referred as to 
resolution error; 2- the Born error that is because of 
the Born approximation. 
Figure 2 illustrates the first reconstruction using the 
DF and FBP algorithms. It can be seen that the 
FBP presents better results at all three frequencies. 
For both methods, the low-pass filtered version of 
the object function is obtained, since all spatial 
frequency components of O(x,y) are not available. 
The figure demonstrates that the increase of the 
time frequency (1.0 GHz to 4.0 GHz) improves the 
resolution, which can be justified by noting k0 
becomes larger. 



 
 
 
 
 
 
 
 
 
 
 

Figure2: Reconstruction of permittivity profile of a cylinder with radius=10cm, 
 rε =1.05 and σ =0. a) Using the DF method. b) Using the FBP method. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure3: Reconstruction of permittivity profile of a cylinder with radius=10cm, 
 rε =1.1 and σ =0. a) Using the DF method. b) Using the FBP method. 

 
Figure 3 illustrates how the DF and FBP find the 
profile of a cylinder with rε =1.1. It is evident the 
reconstruction is not as good s the pervious one, 
since the higher the permittivity is, the larger the 
Born error becomes. Also, one can observe that 
although the growth of the time frequency 
enhances the resolution, matching between the  
reconstruction and the true profile is degraded. As 
the wavelength is decreased (the time frequency is 
enlarged), the resolution error is reduced; but the 
Born error contributes more. The FBP algorithm, 
again, provides the superior results; the 
reconstruction from the FBP technique are, 
therefore, only given afterwards. 
 
 
 
 

When the contrast between the object and the 
background medium is enlarged, the DF fails to 
image the object, as this fact is pointed out in 
Figure 4. Furthermore, this failure affects the 
conductivity profile. Finding the conductivity of 
the same cylinders (in Figure 4), the FBP provides 
the result in Figure 5. It can be seen that the error 
in the conductivity bears higher error when the 
permittivity contrast is increased, though the 
object is lossless (i.e. σ =0 ). 
In order to understand the behaviour of the FBP 
when the object in Figure 3(b) expect with 
σ =10mS. Figure 6 shows both the permittivity 
and conductivity.  

 
 
 
 
 
 
 
 
Figure4: Performance of the FBP in obtaining the profile of cylinders with a) rε =1.2 and b) rε =1.3. In both case,σ =0. 



 
 
 
 
 
 
 
 
 

 
Figure5: Derivation of the conductivity profile by the FBP algorithm. a) the object permittivity is the solid line in Figure 

4(a). b)the object has the permittivity profile shown by solid line in Figure 4(b) is the object. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure6: The reconstruction of a cylinder with nonzero conductivity. Figure 3(b) should be compared with (a). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure7: The FBP reconstruction of permittivity profile of cylinders with radius=5cm andσ =0. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

Figure8: Illustration of the Performance of the FBP algorithm in reconstructing cylinders, whose 
 rε are changed along their radius.σ =0 for both cases. 



The resolution of the FBP imaging is, further, 
studied in Figures 7 and 8. The FBP cannot 
produce good results for small objects(Figure 7) 
and those with more details(Figure 8). One may 
speculate the reduction in the wavelength would 
improve the resolution. This, however, increase the 
Born error, as discussed before. 
Finally, we investigate the reconstruction of a 2-D 
scaled model of a cancerous breast, employing the 
FBP algorithm. Reported in [18], the relative 
permittivities of normal and malignant breast tissue 
Are 10 and 50, respectively. For microwave 
imaging, the breast is usually inserted into water 
[3], which forms the background medium. Since 
the wavelength inside water ( water

rε =80) over 
microwave frequency is relatively small        
( λ =3.3 cm at 1GHz), the simulation of an actual 
microwave imaging system for breast needs 
significant computing resources that is not 
available in our department. Therefore, the 
simulation is carried out on a scaled model, shown 
by solid line in Figure 9. All permittivities are 
divided by 5 so as to preserve the contrast between 
the elements. In this 2-D model, a 10cm diameter 
cylinder forms the breast, and the malignant 
(cancerous) tissue is a cylinder with 8 mm diameter 
at the center of the breast. 
Obviously, it is not expected the FBP make a 
miracle with such  high contrast object. The results 
is indicated in figure 9, where the failure is evident. 
 

Figure 9: Reconstructing a 2-D scaled model of a 
cancerous breast, using the FBP algorithm. 

 
The overall conclusion will be presented in the next 
section. 
 
4      Conclusion  
 
The conventional DT methods suffer from two 
major drawbacks, lack of sufficient resolution over 
centimetre wavelength and failure in reconstructing 

the large objects with considerable contrasts in 
profile (strong scattering objects). Shortening the 
wavelength to remedy the resolution problem 
causes the second problem is more highlighted. 
The classical DT is, therefore, suitable for weak 
scattering objects imaged at millimetre 
wavelengths. This situation arises in several 
practical applications, such as reconstruction of 
optical fibers and crystal structures. Further works 
to solve these problems is going to be ahead in our 
research. 
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