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Abstract – A general approach to derive a solution method 
for the problem of microstrip line with an inclined slot in 
the ground plane is presented. The formulation is based on 
the Galerkin's method to find the unknown electric field 
which is generated in the slot area. Using the spectral 
domain transformation, reciprocity theorem and some 
other techniques such as integral transformation, a full 
wave solution for this configuration is obtained. Effects of 
various parameters such as slot dimensions and inclination 
are studied. Finally computed results are compared with 
measurements and previously computed data. 
 
1      Introduction 
 
  The configuration of the problem is depicted in the Fig. 1, 
where the slot in the ground plane has an arbitrary angle 
with the feed line (θs). 
 
 

 

 
Fig. 1: Geometry of an inclined slot in the ground plane of 
the microstrip line 

 
  This configuration has some useful applications in the 
microwave devices such as filters, patch antennas, phase 

shifters, wide band couplers, hybrids, slot-coupled double 
layer microstrip lines, etc. 
 
  In the past researches, there has been some analysis 
dealing with the problems related to this configuration. 
Analysis of a slot with 90° inclination using the moment 
method is reported by Pozar [1], in which only transverse 
modal fields of the microstrip line have been considered. 
However in the inclined configuration, longitudinal 
component of the magnetic modal field is playing an 
essential role in the generation of the electric field in the 
slot region. Therefore applying this method for an inclined 
slot would generate non-accurate results. In the reference 
[2] the longitudinal component of the magnetic field has 
been considered, but the effect of the TE and TM poles in 
the microstrip Green's function has not been considered in 
the computation of the final integrals and residues. The 
TM poles have a zero cut off frequency while TE poles 
appear in the higher frequencies. Therefore at least one 
TM pole exists in the Green's function. This pole has a 
negligible effect on the results in the lower frequencies, so 
we have good results in these frequencies without 
considering this pole as could be seen in [2]. However for 
the higher frequencies, not only the effect of the first TM 
pole increases but also some other TE and TM poles 
appear in the Green's function so for obtaining more 
accurate results in the higher frequencies we need to 
consider the effect of both TE and TM poles in the 
computation of the integrals and residues. 
 
  In this paper, exact Green's function of a grounded 
dielectric slab is used in a moment method solution to find 
the unknown electric field in the slot region. Similar to [1] 
and [2], reciprocity theorem results in a relationship 
between the electric field of the slot and the transmission 
properties of the microstrip line. Finally, results are 
compared with the measured and previously computed 
data. Effects of the slot inclination, width and length on the 
transmission properties are discussed. 
 
2      Formulation 
 
   Assume a microstrip line with the strip width of Wm, 
substrate dielectric thickness of H and relative dielectric 
constant of εr. The ground plane and strip both assumed to 
be perfect conductors. The structure is infinite in the both x 
and y directions and the strip is extended from−∞ to +∞ , 
in the x direction. Slot is etched on the ground plane. Slot's 



width (Ws), Length (Ls) and inclination to the feed line (θs) 
are shown in the figures 1 and 2. Coordinate systems 
(x,y,z) and (x',y',z) are placed in the center of the slot, as 
shown in the Fig. 1. 

 
Fig. 2: Inclined slot etched in the ground plane of the 
microstrip line 
 
  Now, imagine an auxiliary source placed at x = −∞  that 
creates the positive propagating waves. These waves are 
propagated along the x direction in the perfect microstrip 
configuration until reach to the slot. Presence of the slot 
makes some changes to the waves, because of the non-
matched condition for the fields in the slot region; 
Therefore part of the electromagnetic field is reflected and 
goes back to the source (Γ), part of it is radiated in the free 
space below the slot and the remaining of the field is 
propagated in the positive x direction and runs away from 
the slot (Τ). This produces some evanescent fields near the 
slot and a transverse electric field in the slot area which is 
essential for satisfying the boundary conditions in the slot. 
 
  If the modal components of the microstrip are represented 

by +e
G

, +h
G

for the positive propagating waves and -eG , -h
G

for 
the negative propagating waves, one could say that in the 
microstrip line, the fields before the slot (x << 0) are a 
combination of the positive and negative propagating 
waves but after the slot (x >> 0), there is only the positive  
propagating waves. Therefore the field of the feed line in 
the microstrip-slot structure can be represented by the 
following expressions: 

  : x<0
( , , )

T                   : x>0 

j x j x

j x

e e e e
E x y z

e e

β β

β

+ − − +

+ −

+ Γ
=




G G
G

G  (1) 

 : x<0
( , , )

T                  : x>0 

j x j x

j x

h e h e
H x y z

h e

β β

β

+ − − +

+ −

+ Γ
=




K K
G

K  (2) 

  Where Γ and T are the unknown reflection and 
transmission coefficients of the slot and β is the 
propagation constant of the modal fields in the microstrip 
line. The time dependence ejωt is assumed for all 
components. The modal fields can be achieved using the 
spectral domain approach and the equivalent transmission 
line model for the microstrip line [3]. Expressions for β 
and the modal components are presented in the Appendix. 
The modal fields normalized so that: 
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  Using the reciprocity theorem similar to which has been 
used in the reference [1] and [2], results: 

( ) ( )1
2

j x
z

Slot
slotE h e dsβ+ −Γ = ×∫∫

G GG
i  (4) 

( ) ( )1
2 1j x

z
Slot

slotT E h e dsβ− += × +∫∫
G GG

i  (5) 

ˆ
z dxdyds z= −
G

 (6) 
  Eslot is the unknown electric field of the slot. As can be 
seen in the above equations, the unknowns Γ and T are 
related to the Eslot. Therefore the problem is finding the 
unknown electric field of the slot. By applying the method 
moments, Eslot could be computed. 
 
  If the slot is sufficiently narrow, the electric field of the 
slot only has a transverse component. In the other words, 
in the slot region, only an electric field in the x' direction 
exists and the y' component of the electric field of the slot 
is negligible. Therefore this field could be represented by: 

ˆ 'slot slotE E x=
G

 (7) 
   By this assumption, the problem is finding a scalar 
function Eslot in the Eq. (7).  For finding Eslot an auxiliary 
equation is needed. This equation is obtained by satisfying 
the boundary condition for the magnetic field of the slot. In 
the slot area two types of the fields exist: 
 

1. One type of the field is the field which is in the 
form of the microstrip modal field. This type only 
exists in the z>0 region and its magnetic field in 
the slot (z=0+) is represented by Hf. This type of 
the field never creates any electric field in the slot 
area. 

2. The other type of the field is the field which is not 
propagative in the microstrip line and only exists 
near the slot. In the both upper and lower regions 
(z>0 and z<0) this type of evanescent field exists 
and presence of this type is the source of the 
electric field which is generated in the slot (Eslot). 
In the slot area, the magnetic field of this type is 
represented by Hm, Hm

+ for z=0+ and Hm
- for z=0-.  

 
  Therefore in the upper region (z>0), the magnetic field is 
the summation of the feed line and the slot’s fields, while 
in the lower region (z<0), there is only the field of the slot: 
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  In the slot, the continuity of the transverse component of 
the magnetic field must be satisfied so that: 

y' y' y'( , ) ( , ) ( , ) 0f
m mH x y H x y H x y+ −+ − =  (10) 

  This relation is valid only in the slot area. Hf is the 
magnetic field of the feed line which is a function of the 
modal fields, Γ and Τ. Modal fields are known from the 
spectral domain solution of the microstrip line (See 
Appendix) while Γ and Τ are related to the unknown Eslot 



(See Eq. (4) and Eq. (5)).  Therefore Hf is could be 
represented as a function of Eslot.  
 
  If Eslot is known, the use of the Green's function of the 
grounded dielectric slab determines the magnetic field 
generated by Eslot (which is defined as Hm). Therefore in 
the Eq. (10), the magnetic field Hm can be related to the 
unknown Eslot by using the Green's function. 
 
  Since both Hf and Hm can be related to the Eslot, Eq. (10) 
can be expressed by an equation consisting of Eslot. This is 
the key point to find the unknown electric field of the slot. 
The magnetic components Hm and Hf can be expressed by: 
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HM
G� and slotE� are the spectral domain transformation of   

GHM and Eslot where GHM is obtained from the Green's 
function of the grounded dielectric slab (See Appendix). 
Hf

x and Hf
y are the magnetic field components of the feed 

line: 
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   hx and hy are the modal components of the magnetic field 
of the microstrip line.  
 
  In order to solve the problem by the method of moments, 
the electric field of the slot is expressed by a summation of 
the piecewise sinusoidal basis functions. By using these 
functions, accurate results can be achieved even by 
expanding the unknown field only by one term. The form 
of the basis functions is shown in the figure 3: 
 

 
Fig. 3: Definition of the basis functions for the slot 
 
  Each basis function has a definition domain of 2d in the y' 
direction and its domain in the x' direction is Ws (as shown 
in the Fig. 3 and Eq. (16)). Each basis function has a center 

of definition which is shown by Cn for nth basis function. 
The number of the basis functions is limited to N and Eslot 
is expressed by: 
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  Where a1 to aN are unknown coefficients and fn is: 
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  In the above equation Cn, d and ke are defined as: 
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  k0 is the free space wave number. To find the unknown 
coefficients Eq. (10) is used in the following integral form 
(Galerkin's method): 
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  The above equation is repeated for m=1 to N and this 
procedure results N independent equations on the electric 
field of the slot (Eslot). Replacing Eslot by the expansion of 
Eq. (15), results in a system of equations that can be used 
to find unknown coefficients (a1 to aN). Elements of this 
system are some integrals which are presented in the 
following equations: 
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  Where: 
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  Xm and Ym are defined by the following equations: 
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  Solving these equations, lead to the finding of the 
unknown coefficients and the electric field of the slot, as 
well. By determination of the electric field of the slot, Γ 
and Τ are obtained by using equations  (4) and (5).  
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HM
G�  has some TE and TM poles. ∆Hm,n is a two 

dimensional  spectral domain integral of this function with 
infinite integral limits. Therefore integrand of this integral 
has some TM and TE poles in the spectral domain space. 
As it is said, these poles must be considered for achieving 
more accurate results. For computation of these integrals 
the method of [4] is used with some changes and the effect 
of the mentioned poles is considered in the computation of 
the integrals. All the other integrals (Eqs. 23 to 27) are 
defined in the space domain so they could be computed by 
conventional methods. 
 
3      Numerical Results 

 
Fig. 4: Measured and computed results for micro strip-slot 
configuration with εr = 2.20, H = 1.6 mm, Ls = 40.2 mm, 
Ws = 0. 7 mm, Wm = 5 mm, θs =0 
 
  In order to compare the results, problem of the [1] and [2] 
is solved by presented method. Pozar reported the 
measured and computed results by an equivalent circuit for 
this configuration. Equivalent circuit consists of a series 
impedance which its normalized value to the microstrip 
characteristic impedance is represented by R jX+ . The 
equivalent circuit is shown in the figure 5. For this 
equivalent circuit R  and X  are related to the Γ as 
follows: 

2
1-

Z R jX
Γ

= + =
Γ

 (30) 

 
Fig. 5: Equivalent circuit of the slot in the ground plane 
 
  Measured and calculated data is shown in the Fig. 4. 
Computed data is the result of three term expansion of the 
electric field of the slot (N=3), good accuracy compared to 
the previously computed results, is achieved only by 
considering three basis function for the slot. 
 
  Finally the effect of the slot inclination on the 
transmission properties of the slot is discussed. In the 
Figure 6 reflection coefficient of the slot is depicted for 
various inclinations. By increasing θs, Γ decreases and the 
resonant frequency increases. An effective orthogonal 
length for the slot could be defined such that it is 
proportional to the image of the slot on a vector which is 
perpendicular to the strip of the feed line. The resonant 
frequency and the coupling coefficient of the slot with the 
free space (magnitude of Γ), is directly determined by this 
effective length. Since, the effective length is decreases, 
for example by increasing the θs, the resonant frequency 
increases and the coupling factor decreases. Variation of 
the slot’s length results the variation of the effective length 
in a similar manner. Therefore by decreasing in the length 
of the slot, the resonant frequency increases and the 
coupling factor decreases, as well. 
 

Fig. 6: Variation of the reflection coefficient of the 
microstrip-slot structure for various inclinations     
 
4      CONCLUSION 
 
  In this paper, a full wave method has been presented for 
analyzing the slot discontinuities in the ground plane of the 
microstrip line. The method is based on the using of non-
TEM modes for the microstrip line which gives the ability 
of the accurate simulation of the problem, for an arbitrary 
inclined slot in the ground plane. By using this method, 



very good agreement with the previously measured and 
computed data is achieved. Considering the effect of TE 
and TM poles of the Green’s function in the calculation of 
the integrals, introduces an accurate method which could 
be even applied to the higher frequency problems. 
 
5      APPENDIX 
 
  Using the spectral domain techniques lead to finding a 
transmission line model for solving the microstrip structure 
and computing the modal fields [3].  In the dielectric slab, 
the magnetic modal field components, for the microstrip 
line are: 
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  Where kZ2 and kZ1 are: 
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  By these equations the spectral domain functions of the 
magnetic modal fields are known. By using the Fourier 
transformation integrals, one could obtain the space 
domain functions for the magnetic modal fields. Modal 
electric fields are obtained from the following equation: 
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  I0 in the definition of the modal fields is the quasi static 
current that creates the modal fields. For normalization of 
the modal fields (as expressed in Eq. (3)) we must have: 
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  ZC is the characteristic impedance of the microstrip line. 
β and ZC could be computed by any conventional method 
which is used to calculate the characteristic impedance and 
propagation constant of the microstrip line[5]. Using 
Green's function of grounded dielectric slab, results: 
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