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known to be capable of performing much better 
than the LMS algorithm but practical 
implementations of this algorithm are often 
associated with high computational complexity 
and/or poor numerical properties [1], [2] ,[3]. It is 
well known that two of most frequently applied 
algorithms for noise cancellation [1], [4], [5] are 
normalized least mean squares (NLMS) and 
recursive least squares (RLS) [6] algorithms. 
Considering the two algorithms, it is obvious that 
NLMS algorithm has the advantage of low 
computational complexity. On the contrary, the 
high computational complexity is the weakest 
point of RLS algorithm but it provides a fast 
adaptation rate. Thus, it is clear that the choice of 
the adaptive algorithm to be applied is always a 
trade off between computational complexity and 
fast convergence. In this paper we have performed 
and compared these classical adaptive filters for 
attenuating noise in speech signals. In each 
algorithm, the optimum order of filter of adaptive 
algorithms have also been found through 
experiments. 
We have organized our paper as follows: The 
classical adaptive filters are reviewed in section 2. 
In Section 3 the adaptive noise cancellation setup 
will be explained. In the next section the 
simulation results has been presented and finally 
Section 5 is the conclusion. 
 
2 The Classical Adaptive Filters 
 
In this section we will review the theory of 
classical adaptive filter algorithms. 
 
2.1  Motivation 
 
We start our discussions by reviewing the linear 
estimation problem and the corresponding steepest 
descent methods.  
Thus let d  be zero-mean scalar-valued random 
variable with variance 

22 dEd =σ , and let ∗u , 

that " ∗ " is conjugate operator, be  a  zero-mean 
1×M  random  variable  with  a   positive-definite
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1 Introduction 
 
Adaptive filtering has been, and still is, an area of 
active research, playing important roles in an ever-
increasing number of applications. In an adaptive 
filter, the coefficients are periodically updated 
according to an adaptive filtering algorithm in 
order to minimize a certain cost function. Least 
Mean Square (LMS), Normalized LMS and 
Recursive Least Square (RLS) are well known 
adaptive filter in signal processing application. 
The LMS algorithm is very popular because of its 
low computational complexity [1]. However, the 
convergence rate of the LMS depends on the 
length of the filter and on the input statistics. The
Normalized Least Mean Square (NLMS) 
algorithm [1], [2] is also a widely used adaptation 
algorithm due to its computational simplicity and 
ease of implementation. Furthermore, this 
algorithm is known to be robust against finite 
word length effects. One of the major drawbacks 
of the NLMS algorithm is its slow convergence 
for  colored  input  signals. The  RLS  algorithm is



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

covariance matrix, uEuRu
∗= . The 1×M cross 

covariance vector of d  and u  is denoted by 
∗= EduRdu . The weight vector w  that solves 

2min uwdE − is given by: 

                (1)duu RRw 10 −= 
that the resulting minimum mean square error is 

(2) duuudd RRResmm 12... −−= σ  
There are several steepest descent methods that 
approximate 0w  iteratively, until eventually 
converging to it. For example, the following 
recursion with a constant step size, 

[ ] (3)     111 guessinitialwwRRww iuduii =−+= −−− µ
 where the update direction, 1−− iudu wRR , was 
seen to be equal to the negative conjugate 
transpose of the gradient vector of the cost 
function at 1−iw , 

(4)  [ ]∗−− ∇−=− )( 11 iwiudu wJwRR  
where 

2)( uwdEwJ −= . Also we can use an 

iteration step-size, )(iµ , and studied the 
recursion: 

[ ] (5)    , )( 111 guessinitialwwRRiww iuduii =−+= −−− µ
 And In Newton’s recursion, we have, 

[ ] (6)    , 11
1

1 guessinitialwwRRRww iuduuii =−+= −−
−

− µ

 where 1−
uR resulted from using the inverse of the 

Heissian matrix of )(wJ , namely, 
[ ] (7)                     )()( 11

2
−− ∇∇=∇= ∗ iwwiwu wJwJR

 
More generally, when regularization is employed 
and when the step size is also allowed to be 
iteration-dependent, the recursion for Newton’s 
method is replaced by: 

[ ] [ ] )8()()( 1
1

1 −
−

− −++= iuduuii wRRRIiiww εµ
 for some positive scalars )}({ iε , they could be 
set to a constant value for all i , say εε =)(i . 
 
2.2 The LMS Algorithm 
 
Assume that we have access to several 
observations of the random variables d and u : 

{ } { } )9(,......,,,),....3(),2(),1(),0( 3210 uuuuanddddd
 One of the simplest approximations 
for{ }udu RR , is to use the instantaneous values: 

(10) ∗∗ == iiuidu uuRuidR ˆ,)(ˆ  
This  construction simply amounts to dropping the 

expectation operator from the actual and replacing 
the random variables { }ud ,  by observations
{ }iuid ),( . In this way, the gradient vector in Eq.4
is approximated by the instantaneous value: 
[ ] [ ] )11(     )()()(ˆ

111 −
∗

−
∗∗∗

− −=−=∇− iiiiiiiiw wuiduwuuuidwJ
 
and the corresponding steepest-descent recursion 
in Eq.3 becomes: 

[ ] )12(   )( 111 guessinitialwwuiduww iiiii =−+= −−
∗

− µ

 we continue to write iw  to denote the estimate 
that is obtained via this approximation procedure 
although, of course, iw  in (12) is different from 
the iw that is obtained from the steepest descent 
algorithm (3): the former is based on using 
instantaneous approximations whereas the latter is 
based on using { }udu RR , . 
The stochastic-gradient approximation (12) is one 
of the most widely used adaptive algorithms in 
current practice due to its striking simplicity. It is 
widely known as the least mean-squares (LMS) 
algorithms, or sometimes as the Widrow-Hoff 
algorithm in honor of its originators [1]. 
 
2.3 The NLMS Algorithm 
 
We start with the so-called normalized LMS 
algorithm, which can be motivated in much the
same as LMS was except that now we start from 
the regularized Newton’s recursion (8) and 
assume that the regularization sequence { })(iε
and the step size sequence )(iµ  are constants, 
say, εε =)(i  and µµ =)(i . Thus using: 

[ ] [ ] (13)       1
1

1 −
−

− −++= iuduuii wRRRIww εµ
and replacing the quantities )( uRI +ε and 

)( 1−− iudu wRR by the instantaneous 

approximations )( ii uuI ∗+ε and 

[ ]1)( −
∗ − iii wuidu , respectively, we arrive at the 

stochastic-gradient recursion: 
[ ] [ ](14) )( 1

1

1 −
∗−∗

− −++= iiiiiii wuiduuuIww εµ
 
This recursion, in its current form, requires the 
inversion of the matrix )( ii uuI ∗+ε  at each 
iteration. This step can be avoided by working the
recursion into an equivalent simpler form. Thus 
note that )( ii uuI ∗+ε is a rank-one modification of
a multiple  of  the identity  matrix, and the  inverse

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of every such matrix has a similar structure. To 
see this, we simply apply the matrix inversion 
formula to get: 

[ ] )15(
1 21

2
11

ii
i

ii uu
u

IuuI ∗

−

−
−−∗

+
−=+

ε
εεε

Where the expression on the right hand side is a 
rank-one modification I1−ε . If we now multiply 
both sides of (15) by ∗

iu from the right we obtain: 

[ ]

)16(1

1

22

2
1

2

21

2
11

i

i

i

i
i

ii

i

iii

u

u

u

u
u

uu
u

uuuI

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

=
+

−=+

∗
∗−

∗

−

−
∗−−∗

εε
ε

ε
εεε

 Which is a scalar multiple of ∗
iu . Substituting 

into (14) we arrive at the ε -NLMS recursion [1]: 

[ ] )17( 0, )( 121 ≥−
+

+= −
∗

− iwuidu
u

ww iii

i

ii
ε

µ

 
2.3 The RLS Algorithm 
 
A second example of an algorithm that employs a 
more sophisticated approximation for uR is the 
recursive-Least-squares(RLS)algorithm. Just like 
ε -NLMS andε -APA, we again start from the 
regularized Newton’s recursion (8), namely, 

[ ] [ ] )18( )()( 1
1

1 −
−

− −++= iuduuii wRRRIiiww εµ
 while we still replace )( 1−− iudu wRR by the 
instantaneous approximation: 

[ ] )19()( 1−
∗ − iii wuidu

we now replace uR  by a better estimate for it, 
which we choose as the exponentially weighted 
sample average: 

)20(
1

1ˆ
0
∑
=

∗−

+
=

i

j
jj

ji
u uu

i
R λ

 for some scalar 10 ≤≤ λ . Assume first that
1=λ . 

Then the above expression for uR̂  amounts to 
averaging all past regressors up to time i , namely,

)21( 1
1

1ˆ
0

=
+

= ∑
=

∗ λwhenuu
i

R
i

j
jju

choosing a value for λ  that is less than one
introduces memory into the estimation of uR . 
This is because such a λ  would assign larger
weights to recent regressors and smaller weights
to regressors  in the remote past. In this  way , the

filter will be endowed with a tracking mechanism 
that enables it to forget data in the remote past and 
to give more relevance to recent data so that 
changes in uR can be better tracked. 
We further assume that the step-size in (18) is 
chosen as: 

)22()1(
1)( += iiµ

whereas the regularization factor is chosen as: 
)23(0)1()( 1 ≥+= + iii i ελε

for small positive scalarε . This choice for )(iε is 
such that regularization disappears at time 
progresses. With the above approximations and 
choices, the  regularized  Newton’s recursion (18) 
becomes: 

[ ] )24(   )( 1

1

0

1
1

−
∗

−

∗

=

−+
−

−

×⎥
⎦

⎤
⎢
⎣

⎡
++= ∑

iii

jj

i

j

jii
ii

wuidu

uuIww λελ

this recursion is inconvenient in its present fro 
since it requires, ae each time instant I, that all 
previous and present data be combined to form the 
matrix: 

)25(
0

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Φ ∗

=

−+ ∑ jj

i

j

jii
i uuI λελ

 which then needs to be inverted. These two 
complications (of data storing and matrix 
inversion) can be alleviated as follows. Observe 
from the definition of iΦ that it satisfies the 
recursion: 

)26(11 Iuu iiii ελ =Φ+Φ=Φ −
∗

−

Let 1−Φ= iiP . Then applying the matrix 
inversion formula to gives: 

)27(,
1

1
1

1
1

11
1

1
1 IP

uPu
PuuP

PP
iii

iiii
ii

−
−∗

−
−

−
∗

−
−

−
− =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−= ε

λ
λ

λ

This recursion shows that the update from 1−iP  to

iP  requires only knowledge of the most recent 
regressor iu . In this way, at each time instant i , 
the algorithm only needs to have access to the 
data{ }11 ,),(, −− iii Puidw in order to determine
{ }., ii Pw  The matrix 1−iP  essentially  summarizes 
the information from all previous regressors [3]. 
 
3 Adaptive Noise Cancellation 
 
The basic  idea  of  an  adaptive noise cancellation

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

algorithm is to pass the corrupted signal through a 
filter that tends to suppress the noise while leaving 
the signal unchanged. This process is an adaptive 
process, which means it can not require a priori 
knowledge of signal or noise characteristics. 
Adaptive noise cancellation algorithms utilize two 
or more microphones(sensor). One microphone is 
used to measure the speech + noise signal while 
the other is used to measure the noise signal alone. 
The technique adaptively adjusts a set of filter 
coefficients so as to remove the noise from the 
noisy signal. This technique, however, requires 
that the noise component in the corrupted signal 
and the noise in the reference channel have high 
coherence. Unfortunately this is a limiting factor, 
as the microphones need to be separated in order 
to prevent the speech being included in the noise 
reference and thus being removed. With large 
separations the coherence of the noise is limited 
and this limits the effectiveness of this technique. 
In summary, to realize the adaptive noise 
cancellation, we use two inputs and an adaptive 
filter. One input is the signal corrupted by noise 
(Primary Input, which can be expressed as 

)(Ns(n) 0 n+ ). The other input contains noise 
related in some way to that in the main input but 
does not contain anything related to the signal 
(Noise Reference Input, expressed as )(N1 n ). The 
noise reference input pass through the adaptive 
filter and output y(n)  is produced as close a 
replica as possible of )n(N0 . The filter readjusts 
itself continuously to minimize the error between 

)(N0 n  and y(n) during this process. Then the 
output y(n) is subtracted from the primary input to 
produce the system output yNse −+= 0 , which 
is the denoised signal. Assume that S, N0, N1 and 
y are statistically stationary and have zero means. 
Suppose that S is uncorrelated with N0 and N1 , 
but N1 is correlated with N0. We can get the 
following equation of expectations: 

)28(])[(][][ 2
0

22 yNEsEeE −+=

When the filter is adjusted so that ][ 2eE is 
minimized, ])[( 2

0 yNE − is also minimized. So 
the system output can serve as the error signal for 
the adaptive filter. The adaptive noise cancellation 
configuration is shown in figure 1. In this setup, 
we model the signal path from the noise source to 
primary sensor as an unknown FIR channel eW . 
Applying the adaptive filter to reference noise at 
reference sensor, we then employ an adaptive 
algorithm to train the adaptive filter  to  math

or estimate the characteristics of unknown channel
eW . 

If the estimated characteristics of unknown 
channel have negligible differences compared to 
the actual characteristics, we should be able to 
successfully cancel out the noise component in 
corrupted signal to obtain the desired signal. 
Notice that both of the noise signals for this 
configuration need to be uncorrelated to the signal 
s(n). In addition, the noise sources must be 
correlated to each other in some way, preferably 
equal, to get the best results. 
Do to the nature of the error signal, the error 
signal will never become zero. The error signal 
should converge to the signal S(n), but not 
converge to the exact signal. In other words, the 
difference between the signal s(n) and the error 
signal e(n) will always be greater than zero. The 
only option is to minimize the difference between 
those two signals. 

Noise 
Source

(n)N1

Noise 
Source

(n)N1

Source 
Signal

S(n)

Source 
Signal

S(n)
∑

_

Primary 
Sensor

Reference 
Sensor

Output

eWeW

Adaptive 
Filter

W(n)

Adaptive 
Filter

W(n)
(n)Nx(n) 1= y(n)

(n)NW(n)N 1e0 ×=

(n)Ns(n)d(n) 0+=

e(n)

Figure1. Adaptive noise cancellation setup 
 

4 Experimental Results  
 
In this section we assess the performance of each 
algorithm in noise cancellation setup as shown in 
figure 1. The LMS, NLMS and RLS are 
implemented and compared with each other. 
The original speech is corrupted with office noise. 
The SNR of primary signal is -10.2180 dB. This 
signal is then processed as in Figure 1. 
The filter's order is chosen as 10=M . The LMS 
(with 003.0=µ ), NLMS (with 005.0=µ ), RLS 
(with 1=λ ) algorithms are applied for adaptation 
of  the filter coefficients. The SNR of the filtered-
signal is calculated for each experiment. The SNR
Improvement (SNRI) is defined as the final SNR
minus the original SNR. The results of the 
simulation have been shown in Table 1 and 
figures 2-7. From Table 1, we see that the SNRI of 
RLS algorithm is higher than LMS and NLMS. 
Figure 2 shows the Original signal, Primary 
Signal, Output of Filter, Mean Square Error for 
adaptive noise cancellation using  LMS algorithm. 
We have  also  plotted the  time evolution of filter-

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

taps for LMS algorithm in figure 3. Figures 4-5  
and  figures 6-7 show the output of the adaptive 
noise cancellation and filter taps using NLMS and 
RLS algorithms. As we can see the RLS algorithm 
has good capabilities in convergence of filter taps 
and canceling the noise of speech in primary 
input. 
 

Table 1: SNR Improvement in dB  
 LMS NLMS RLS 
SNRI(dB) 15.2859 16.1742 41.7355

 

In order to obtain the optimum order of the filter 
for each algorithm, we changed the order of filter 
from 1 up to 300 and then calculated SNRI for 
each order of filter. 
Then, we plotted SNRI against the order of filter, 
that have been shown in figures 5-7. 
According to figures5-7, we notice that this 
figures are similar in all the algorithms. We also 
understand, the maximum value of SNRI occurs 
when the value of order is equal to 8 that we name 
it "Optimum Order". 
 
4 Conclusions 
 
In this paper we have performed and compared 
classical adaptive filters, such as LMS,NLMS and 
RLS algorithms, for attenuating noise in speech 
signals. In each algorithm the time evolution of 
filter taps, mean square error, and the output of 
filter are illustrated. Also, the Optimum Order of 
filter is calculated through experiments. The 
results show that the RLS algorithm has good 
convergence capabilities and is numerically robust 
in compare with LMS and NLMS algorithm. 
 
 
 

 
Figure 2. Original , Primary and Filtered Output 
signal and Mean Square Error in ANC through 

LMS algorithm. 

Figure 3. Time evolution of filter taps in ANC 
through LMS algorithm.  

 
 

Figure 4. Original , Primary and Filtered Output 
signal and Mean Square Error in ANC through 

NLMS algorithm. 
 

Figure 5. Time evolution of filter taps in ANC 
through NLMS algorithm. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Figure 6. Original , Primary and Filtered Output 
signal and Mean Square Error in ANC through 

RLS algorithm. 
 
 

Figure 7. Time evolution of filter taps in ANC 
through RLS algorithm. 

 
 

Figure 8. SNRI against order of filter for LMS 
algorithm. 

 

Figure 9. SNRI against order of  for NLMS 
algorithm. 

 

Figure 10. SNRI against order of  filter for RLS 
algorithm. 
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