
A New General Graph-based Model for Non-
Monotonic Protection Systems

Mohammad Ebrahim Rafiei1, Hamid Mousavi1,

Hamid Reza Shahriari2, Reza Sadoddin1, Rasool Jalili3
.

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran.
1{rafiei, h_mousavi, saededdi}@ce.sharif.edu

2shahriari@mehr.sharif.edu
3jalili@sharif.edu

Abstract: One of the most challenging problems in
security is the safety problem in which we should determine
whether a subject can gain access to an object or not. Many
approaches have been proposed to address this problem.
Nevertheless, most of them lack the ability to model real-
world systems or suffer from efficiency problems. In this
paper, we propose a general graph-based protection
system. In addition to monotonic rules, both non-monotonic
rules and rules which may check for absence of rights as
their preconditions are included in our model. Moreover,
broad range of vulnerabilities including most of DoS
vulnerabilities can be modeled via these general rules
easily. It is proved that the safety problem in general form
of our proposed model is NP-Complete. However, we
introduce some simplified cases of the model, such as
monotonically increasing systems and systems which
contain only permanent rules, in which the safety problem
can be answered in polynomial time.

Keywords: Safety Problem, Protection System,
Vulnerability Analysis, Access Control Models, NP-
Completeness, 3-SAT Problem.

1. Introduction.
Safety is one of the most important problems in many
systems especially computer-based ones. Determining
if a system is in a safe state or not is usually
considered as the safety problem. Safety problem is
important mainly because of its extensive use in many
security issues such as access control systems,
intrusion detection systems and etc. Another
important issue, that safety problem can also help in,

is the vulnerability analysis. A specific failure of the
controls is called vulnerability which may allow
unauthorized access to attackers [1]. Thus,
vulnerability analysis deals with specifying,
designing, and implementing a computer system
without vulnerabilities, discovering unknown
vulnerabilities and detecting possible exploits of
vulnerabilities. To solve the safety problem, usually a
model is needed which is called Protection System.
Knowing all of these, we can define the safety
problem more formally as the following question:
“Given an initial configuration of a protection system,
whether subject s can obtain access right r on object o
or not.” In fact, we desire to prevent an unwanted or
unreliable subject to achieve a right which it did not
already have [2].

As already mentioned, the first step to solve the
safety problem is to construct a protection system.
Ideally, the proposed protection system should
address all aspects of real-world systems with some
reasonable assumptions and the safety problem also
should be solvable in a reasonable time. Till now,
some protection systems were proposed
[1][2][3][4][5][6][7][8], however simplifications and
restrictive assumptions have made most of these
models far from real systems.

In almost all of these models, there are only some
limited rules. Many of them contain only increasing
rules that is the rules which can only add rights or
other entities to the model. We call these models

monotonic. A few numbers of existing models
contains decreasing rules in which only some
accesses (or other entities) will be removed. However,
there are many cases in which some goals or new
access rights will not be achieved unless some other
access rights are removed (denial of service attacks
are good examples of this.) Thus, some rules are
needed which are both increasing and decreasing at
the same time. In other word, we need rules which
can add to and delete from the model simultaneously.
Another important shortcoming of most existing
models is the lake of rules which check for non-
existence of rights (or other entities) in their pre-
condition parts. Some of the existing models are also
weak in simulating nodes properties. Many of them
can note define a specific property or vulnerability for
a node. Attribute-based models are of the few ones
which have tried to solve this shortcoming [6]. Based
on the knowledge of the authors, none of the
previously proposed models contains all of the
mentioned properties at the same time. Almost all of
them either are not general enough or can not be
simplified to more practicable models.

Obviously there is a trade-off between the
generality of the model and the complexity of the
safety problem in it. This is confirmed in [9] too.
Thus, in this paper, we propose a new general graph-
based protection system which contains all the
mentioned properties at once with the least possible
complexity. We also show how our model contributes
to analyze some vulnerabilities more easily. It is
proved that the safety problem in this general model
is an NP-Complete problem. Also, we show how the
model can be simplified to some polynomially
solvable sub-problems. As an example, it is shown
how to solve the safety problem in polynomial time
for monotonically increasing systems. The model
actually is designed in a way that one can simplify it
for his/her own use. It is worthy to note that
simplifications in some models, such as HRU [5],
make it weak in modeling real system efficiently.
However, we try to preserve important properties in
simplified models. This may lead to more practicable
cases.

The rest of this paper is organized as follows: at
first, we summarize related works in section 2. In
section 3, we define our protection system and
provide the formal definition of the safety problem in
the model. The polynomially solvable sub-problems
are discussed in section 4. In section 5, we prove the

NP-completeness of the general problem. Finally,
conclusion and future works are included in section 6.

2. Related Work.

In [5], Harrison et al. proved that the safety
problem in its general form is undecidable. However,
in addition to considering some unnecessary
assumptions in their model, the negation of a
condition is not allowed too. That is, one can not test
for the absence of an access right as a command’s
(rule’s) precondition [1]. Later works showed that in
some constrained cases, not only the safety problem is
decidable but it can also be answered in polynomial
time (and in some cases in linear time.)

Jones et al. in [4] proposed Take-Grant model in
which the safety problem is decidable in linear time.
However, the Take-Grant model is not close enough
to the real-world systems [2]. Several applications of
this model with some extensions have been explored
in [2][3][7][8][10]. Frank and Bishop in [10]
presented the notion of cost to generate the most
likely paths for information and rights transfer.
Shapiro in [2] introduced a new access model based
on Take-Grant called diminish-take including a new
fundamental rights-weakening operation called
diminish. It was shown that safety in diminish-take
model is also decidable in linear time. Shahriari et al.
in [3] extended the Take-Grant model and added some
rules, which are standing for the vulnerabilities
explosion, to be used in network vulnerability
analysis. This way, their model which is called
Vulnerability Take-Grant (VTG) would be able to
model some vulnerabilities and their exploits such as
buffer overflow, weak password, and etc.

Graph-based techniques have been used in several
works for designing protection system
[3][11][13][14][15][16][17][18]. Polynomial time
solutions to safety sub-problems were also proposed
in some of them [3][15][16][18]. Nevertheless, most
of the previous researches on protection system have
been focused only on monotonically increasing
systems. In a monotonically increasing system, state
of the system can only be changed by adding new
access rights. This makes the safety problem much
simpler and that is why all the mentioned works have
considered monotonically increasing systems.
However, considering only monotonically increasing
rules in a model makes it weak in dealing with real
systems. To overcome this shortcoming, Sandhu and
Suri in [19] proposed a formal model called Non-

Monotonic Transformation (NMT). They showed
how to implement the model in a distributed
environment, using the client-server architecture.
Later, Ammann and Sandhu used the NMT model to
analyze the safety problem in [20], but their model is
not general enough since it contains few numbers of
rules. In [21], another graph-based non-monotonic
model has been proposed in which rules either
remove or add graph structure but does not do both
simultaneously.

Maybe the only models which have completely
considered non-monotonic systems are those in which
model checking techniques are used [11][12][14][28].
In this approach, an abstract model of the designated
system is usually constructed, and then security
constraints are specified formally. Finally, a model
checker checks if the model meets the specified
security constraints. Ramakrishnan and Sekar in [11]
used this approach to analyze a UNIX operating
system configuration vulnerabilities. Jha et al.
followed a similar approach in [12] using automatic
generation tools to construct attack graph model.

These proposed methods have the advantage of
being independent of the rules’ types and their
complexities. That is, they can support all kinds of
rules in the same way. Nevertheless, the major
problem with using model checkers is the scalability
problem. At the time of the writing this paper, model
checkers are not even able to check a model of
middle-size real-world systems in a reasonable time.

Another part of related works contains the
theoretical aspects of more general models such as
complexity of the related problems to the safety
matter. Harrison et al. in [5] showed that the safety
problem is undecidable in its general form. They also
proved that the safety problem will be decidable in a
mono-operational protection system or in systems in
which creation of a node is not permitted. Lipton and
Snyder in [22] proved that safety will be decidable if
the number of subjects is finite. Other special cases of
their model were introduced later which were not
only decidable but some of them also had polynomial
solutions. Koch et al. showed that safety will be
decidable in their graph-based model for access
control if each rule either deletes or adds graph
structure but does not do both [21]. Considering an
access control system as a state-transition system,
Tripunitara and Li introduced an idea to compare the
expressive power of access control models in [23].

3. Model Specification and the Safety
Problem.

Harrison et al. in [5] proposed a formal

specification of a protection system and tried to define
a generalized form of the commands (rules). The
following specification is inspired by their work and
the work done in [3], but the model proposed here is
more general in some aspects than theirs. We have
also made some relaxations to simplify the model and
its related algorithms.

The protection system PS is defined as a triple (G,
R, P), where G is the initial modeling graph, R is the
set of rules, and P is the set of predicates which
specify the security policy. Next few paragraphs are
devoted to discuss these three parameters.

For the sake of simplicity, we define edges as
triple (v, u, l) in the graph G, where v and u are source
and destination vertices, respectively, and l denotes
the edge’s associated label. For example, the edge (v,
u, read) differs from the edge (v, u, write). This way,
we do not need to deal with labeling issues in the
algorithms. Similar to VTG, vertices may have
vulnerabilities. To handle this, for each vulnerability v
associated to node x, we use a loop edge on x labeled
with v. Similarly, we can use a loop edge labeled with
the nodes’ type. Thus, there is no need for another
structure to handle nodes’ types. For example to show
that the type of node n is object, we use the loop edge
(n, n, object). Another simplification is that there is no
need to remove a node; instead we can remove all its
adjacent edges. We also assume that there is no need
to create new nodes. This assumption makes the
safety problem decidable in the model (Analogous to
Theorem 3 of [5].)

As it can be seen in the previous paragraph, we
are trying to eliminate any unnecessary structure from
our model, to keep the structure simple, and to deal
with different concepts such as vulnerabilities of
nodes and type of nodes in the same way. All of these
make the model more flexible to be used in more
particular protection system.

To define a rule, we need to introduce edge
pattern notation. An edge pattern is a triple of (a, b, t)
where a and b can be matched any vertices of G, and t
is a label.
Definition 1. We say edge pattern (a, b, t) will match
edges (v, u, l) if l and t are the same labels. In this
case, we say a and b match v and u respectively.

For example, (a, b, r) matches all edges labeled r,
or (a, a, o) matches all loop edges labeled o. We can

have also star (*) notation in an edge pattern. Edge
pattern (*, a, m) matches some edges if there exists
vertex v which every other vertex has an edge to v
labeled m. In this case we say a match v. (a, *, m) can
be defined in a similar way. Accordingly, the general
form of the rules is defined as follows:
Definition 2. Every rule in R is defined as a tuple (Ee,
En, Ea, Ed) where Ee and En are two sets of edge
patterns that indicate which edges should exist/not
exist in order that the rule can be applied,
respectively. Ea and Ed are two other set of edge
patterns. Ea represents new edges which will be added
to graph G after the rule application. On the other
hand, Ed indicates the edges which will be removed
from graph G after the rule application.

To apply a rule, there should be a match for all
edge patterns in its Ee and there should not be any
match for any edge patterns in its En. If this is the
case, the edges produced by patterns in Ea and Ed
respecting to the matches found for Ee, will be added
to and removed from G, respectively.

This definition is more general than the one
proposed in [5]. This is mainly because of that the
latter one considers the patterns set En which
addresses the edges which should not exist as a
precondition of the rule. This makes our protection
system capable of analyzing new types of attacks.

For example, consider a system running an
Intrusion Detection System (IDS) to monitor
activities of some entities. Also assume that the
attacker A can gain write access to a given object if it
is not being monitored by IDS, Fig. 1. As shown in
Fig. 1, the system can be represented in our model by
a new vertex in the graph in place of the IDS
alongside with its associated edges, labeled m, to the
nodes which it is monitoring. Adding the following
rule can show how an attacker may reach her goal
formally:

R = (∅, {(*, o, m)}, {(a, o, w)}, ∅)

The new rule implies that if the IDS is not
monitoring a specific object, called o, then the
attacker can gain write access to o.

Based on the knowledge of authors, none of the
existing models of protection systems proposed
before are able to model such an exploit, whereas too
many of such exploits can be addressed in the real
world. The last part of our protection system is the set
P which defines the safety problem. The safety
problem was defined informally before. Here, we
provide the formal definition.

Fig. 1. A simple IDS model. a) Before applying the
IDS rule. b) After applying the IDS rule.

Definition 3. Having a protection system (G, R, P), a
witness is a sequence of rules, r1, r2 … rn, (ri∈R, 1≤ i
≤ n) which are applicable to the initial modeling graph
respectively.
Definition 4. Let r be an access right and, A and B be
two distinct vertices in the modeling graph G.
Predicate can●share(A, B, r, G) is true if and only if
there is a witness whose application to modeling
graph G generates a new graph with an edge from A to
B labeled r.

Security policy of the protection system PS is
specified by predicates of P which may be violated by
applying a witness. We define P to be a set of
can●share predicates. Note that one can add other
predicates to this set, but for our intention in this
paper, can●share is enough. Completing the definition
of our protection model, we can define the Safety
Problem as what follows:

Definition 5. Having the protection system PS = (G,
R, P), the Safety Problem is the problem of finding
witness w whose application to graph G violates at
least one of the predicates included in P.

Obviously, there are other predicates which can
be included in set P. However in our general model,
they are not required since we can answer most of the
other predicates by answering the basic predicate
can●share. As an example, we show how to answer
can●revoke predicate using can●share. The predicate
can●revoke can be defined as follows:
Definition 6. Let A and B be two distinct vertices in
the modeling graph G and there is an edge between A
and B labeled r. Predicate can●revoke(A, B, r, G) is
true if and only if there is a witness whose application
to G generates a new graph in which there is not any
edge from A to B labeled r.

To answer this predicate, we can add a new rule
with following arguments to the set of rules R:

Ee = ∅, En = {(A, B, r)},

Ea = {(A, B, r')}, Ed = ∅

Provided that r' has not been used in any other
rules, predicate can●share(A, B, r', G) will not be
satisfied without using the new rule, which involves
non-existence of an edge labeled r between A and B.
Thus, predicates can●revoke(A, B, r, G) and
can●share(A, B, r', G) can be used interchangeably.
Despite all of these, one may add its own defined
predicates to the security policy P. obviously in
special cases of the model, can●share can not
describe the whole policy and it is obligatory to add
some new predicate to it.

4. Polynomially Solvable Sub-Problems.

In this section, to show the flexibility of the proposed
model and its capability to model special systems
with less cost, we provide some instances of the
safety problem which can be solved in polynomial
time. Let’s call the rules which can decrease access
rights from the modeling graph in the protection
system decreasing rules. Initially, we can divide
decreasing rules into two main classes; the rules
which do not add new access rights to the model, and
those which add new access rights in addition to
removing some other access rights. Later we will
show that we can eliminate the former rules in some
cases.
Definition 7. Monotonically decreasing rules are rules
which only may decrease access rights, that is, Ea =
∅.

Most of DoS attacks [24] and also DDoS attacks
[25] are clear examples of monotonically decreasing
rules, which may cause some services not to be
accessible, without adding new access rights to the
system. For example, consider the SynFlood attack
which exploits a vulnerability in the TCP protocol. In
a TCP SYN flooding DoS attack, an attacker sends
out many SYN messages with forged IP addresses
(this type of attack is called spoofing). The server
replies with SYN/ACK messages, but the attacker
never acknowledges these messages, thereby leaving
many half-open connections on the server. The
intruder can continue sending SYN messages until the
server reaches its half-open-connection limit and can
not respond to any new incoming requests. Thus in
the next steps of its attack scenario, the attacker can
easily forge himself to be the node, which is attacked,
using its IP address and its flooded port number.

Definition 8. Simple rules are the rules in which En
=Φ and each of the sets Ee, Ea, and Ed contains O(1)
number of edges pattern.

1. Let list F be the set of all edge of the

modeling graph P.G.
2. while (! isEmpty(F))
3. e = head (F)
4. Check for all applicable monotonically

increasing rules which e is involved in.
5. foreach (resulting edge like f)
6. add f to P.G
7. if (f has not been in F before)
8. Add f to the list F
9. Delete e from F
10. return P
Fig. 2. Gen_Closure_4MIR: A polynomial time algorithm which
answers can●share predicate when the protection system contains
only simple and monotonically increasing rules.

In other words, applying a simple rule just
involves checking existence of some edges. The
second condition makes the application of simple
rules take O(1) time. Recall that in its general form,
application of a rule may require the graph not to
include some edges. Almost all previously proposed
graph-based models are restricted to simple rules.
Whereas, there are some kinds of exploits in which
we have to be sure that some edges do not exist in the
modeling graph such as the IDS exploit example
described in section 3.

Theorem 1. In a protection system PS = (G, R, P), the
predicate can●share can be answered in polynomial
time, if R contains only rules that are both simple and
monotonically increasing.
Proof. An algorithm like the one proposed by Frank
and Bishop in [10] will answer can●share as shown in
Fig. 2. The proof of polynomial time complexity is
similar to theirs as well. ▀

Theorem 2. In a protection system, the predicate
can●share can be answered in polynomial time, if R
contains only simple rules, and the rules which
decrease access rights act monotonically.
Proof. We prove that monotonically decreasing rules
are useless in satisfying predicate can●share. We
show that monotonically decreasing rules can not
cause to new edges to be added to the modeling graph.
First of all, a decreasing rule may not add new edges
directly. Thus, the only possibility is that a
monotonically decreasing rule causes to addition of
new edges indirectly. This may occur when the
precondition of another increasing rule becomes true.
However, monotonically decreasing rules can only

affect the second part of the other rules’ conditions
which will not be considered in the simple rules at all.

Therefore in such situations, no new edge will be
added because of an edge removal and we can simply
eliminate all monotonically decreasing rules and use
the closure-based algorithm described above to
answer the predicate can●share in polynomial time.▀

Corollary 1. In a similar way it can be shown that if
all defined rules were simple, then monotonically
decreasing rules could be removed from the
protection system. But this time, since there still may
exist some decreasing rules in the model, we can not
use the same closure-based algorithm to answer the
safety problem.
Definition 8. An edge in a modeling graph is
permanent, if and only if its associated access right
will never be removed because of deletion of any
other edges.

The definition implies that no matter whether the
conditions which have caused adding a permanent
edge still hold or not, it will continue to exist in the
graph permanently. As an example of this type of
access right, suppose the attacker A wants to use the
passwords stored in a file f on a host in its attack
scenario. As soon as A achieves read access to f, it has
reached its goal. Even encrypting the password file f,
will not hide the achieved information from A,
because A has already read what it wanted. Thus, the
read access is permanent. Therefore, the only way to
removing a permanent edge is to delete it directly by
a rule.

We will refer to edges which are not permanent
as impermanent edges. As an example, consider that
an attacker wants to use a service which needs
authentication. Suppose the attacker has acquired the
information of an account for the service. The
attacker can use the service as long as the promised
account has not been disabled. Therefore, the
attacker's access to the service is impermanent.
Definition 9. A rule is permanent if it generates only
permanent edges; otherwise it is impermanent.

Next theorem deals with an interesting property
of the systems which use only permanent and simple
rules:

Theorem 3. Let that PS = (G, R, P) is a protection
system in which all the initial access rights are
permanent and only the permanent and simple rules
are allowed. In such a system, the predicate
can●share can be answered in polynomial time.

Proof. The main idea is to construct the closure of the
modeling graph using a conflict graph. The conflict
graph has one vertex in association with every
possible edge in the modeling graph and is initially
empty. We say that two edges in the closure have
conflict (according to the conflict graph) if and only if
there exists a directed path between their related
vertices in the conflict graph. The rule R = (Ee, Φ , Ea,
Ed) is applicable according to the conflict graph if and
only if the match found for Ee contains non-
conflicting edges according to the conflict graph.

Initially the closure is identical to the graph G. In
each step of the algorithm, we will apply an
applicable rule according to the conflict graph and
update two graphs (closure and conflict graphs) as
follows; Let R = (Ee, ∅, Ea, Ed) be the selected rule.
To apply R, the edges produced by Ea will be added to
the closure and all their conflicts will be removed
from the conflict graph (That is, for each edge e
produced by Ea, we will remove all the edges
outgoing from e's related vertex in the conflict graph).
The edges included in Ed (obviously if there exists
any) will not be removed from the closure; instead we
will add directed edges from Ed's associated vertices
in the conflict graph to those of Ea.

We will repeat this step until there is no
applicable rule according to the conflict graph. Thus,
if there is an edge from vertex A to vertex B labeled r
in the computed closure, the answer to the predicate
can●share(A, B, r, G) will be yes. Obviously, the
algorithm is polynomial because in each step at least
one edge will be added to the closure. (Note that there
is no need to consider monotonically decreasing rules
according to corollary 1.) Since the closure contains
polynomial number of edges and each step of the
algorithm needs polynomial time, the time complexity
of the algorithm will be polynomial too.▀

5. NP-Completeness Results.

To show the NP-Completeness of the general problem
we use reduction from 3-SAT [26]. 3-SAT is itself a
special case of Boolean satisfiability (SAT) problem.
SAT is the first established NP-complete problem [27]
and many typical NP-Complete problems can be
directly reduced from it.

Basically, SAT problem is either to find a
satisfying truth assignment of all variables or to prove
there is no satisfying assignment for a given Boolean
formula (usually in Conjunctive Normal Form

(CNF).) 3-SAT is a special case of SAT in which
each clause has exactly three literals.

Theorem 4. The safety problem in the protection
system PS = (G, R, P) is NP-complete if the initial
edges and rules are not necessarily permanent.
Proof. As we mentioned, the safety problem can be
interpreted as finding a witness which makes one or
more predicates in P true. Therefore, it is clear that if
we have a witness, it is possible to verify whether the
witness violates security policy or not in polynomial
time. That is, the problem is in NP. Note that since a
witness includes only different rules it size is
polynomial. To prove NP-Completeness, we use
reduction from 3-SAT. Let ϕ be an instance of 3-
SAT problem. We construct protection system PS =
(G, R, P) such thatϕ is satisfiable if and only if there
exists a witness in PS which violates at least one of
the predicates included in P.

Corresponding to each clause Ci in ϕ , G has a
node Ci. There are three vertices yi, xi and x i in G,
corresponding to each literal xi in 3-SAT problem.
Graph G also contains two other vertices T and T’. T
has a specific type called m which is shown by a loop
labeled m on it. For each literal xi, we add directed
edges from yi to both xi and x i labeled r. If the ith
clause contains xj (x j), we will put a directed edge
from Ci to xj (x j) labeled s and true, and another
directed edge to x j (xj) labeled false. For each i, there
is an edge from yi to T labeled notok. This means that
yet we do not know whether xi has consistent values
in all of its occurrences. The initial graph which is
constructed from a sample 3-SAT problem is shown
in Fig. 3.

The rule set R contains 5 rules:

1. If clause c contains literal x (a variable or its
negation), we will assign the true value to x and false
to its negation:

Ee = {(c, x, s), (y, x, r), (y, x’, r), (c, x, false)},
En = ∅,

Ea = {(c, x, true), (c, x’, false)},
Ed = {(c, x, false), (c, x’, true)}

2. If clause c contains literals x1 and x2 in which both
have the true value, we can assign the false value to
one of them and true value to its negation:

Fig. 3. Reduction from 3SAT. a) Shows construction of modeling
graph for formula f = (!x1∨ x2∨ x3) (x∧ 1∨ !x2∨ x3). b) Shows a
scenario which violate security and also is an answer to 3SAT
problem (x1 = x2 = false and x3 = true.)

Ee = {(c, x1, s), (y, x1, r), (y, x’1, r), (c, x1, true),
(c, x2, s), (c, x2, true)},

En = ∅,
Ea = {(c, x1, false), (c, x’1, true)},
Ed = {(c, x1, true), (c, x’1, false)}

3. If literal x has got true value in all clauses which
contain x, a new edge can be added to the modeling
graph G from y to T labeled ok, where y is the vertex
having an edge to x labeled r:

Ee = {(y, x, r)}, En = {(a, x, false)},
Ea = {(y, T, ok)}, Ed = {(y, T, notok)}

4. Just like the previous rule for x’s false value:

Ee = {(y, x, r)}, En = {(a, x, true)},
Ea = {(y, T, ok)}, Ed = {(y, T, notok)}

5. If all literal get consistent values in their related
clauses, a new edge can be added from T to T’ labeled
ok which shows that ϕ is satisfiable (m is the type of
node T):

Ee = {(T, T, m)}, En ={(a, T, notok)},
Ea = {(T, T’, ok)}, Ed = ∅

The construction will be completed by defining

the set P in protection system PS to contain just the
predicate can●share(T, T’, ok, G). It is not so hard to
show that if there exists a satisfying truth assignment
forϕ , there will be a witness in SP which violates the
security policy and vice versa. ▀

6. Conclusions and Future Works.

In this paper, a general graph-based protection
system was proposed. Although we showed that the
safety problem in its general form in the proposed
model is NP-Complete, but there are still cases in
which the safety problem can be answered in

[9] R. Sandhu. “The Typed Access Matrix Model,” IEEE
Symposium on Security and Privacy, pages 122-136,
1992.

polynomial time. We introduced ideas of simple,
permanent, and monotonically decreasing rules
alongside with some simplified sub-problems of the
safety problem. We also provided polynomial
algorithms to solve these problems. We showed how
the monotonically decreasing rules can be eliminated
when a system contains only simple rules. We also
showed that the safety problem can be answered
polynomially in a system which is restricted to rules
which are both permanent and simple.

Investigating more polynomially solvable
problems can be considered as an interesting future
work. Especially, relevant problems to impermanent
rules are worthy of considering more thoroughly. In
addition, our main goal in this paper was to propose
the general model itself, but the generality of the
proposed model may make it impracticable to be used
in the real world directly. Thus, some adjustments
should be made on the model to simplify it for one’s
specific application while preserving its useful
properties. Simplifying the model by bounding the
number of access rights, rules, vulnerabilities of the
nodes, and their types is yet another area of research.

[10] J. Frank and M. Bishop. “Extending the Take-Grant
protection system,” Technical Report, 1996.

[11] C. Ramakrishnan and R. Sekar. “Model-based
vulnerability analysis of computer systems,”
Proceedings of the 2nd International Workshop on
Verification, Model Checking and Abstract
Interpretation, September 1998.

[12] S. Jha, O. Sheyner, and J. Wing. “Two formal
analyses of attack graphs,” Proceedings of the 2002
Computer Security Foundations Workshop, pages 45-
59, Nova Scotia, June 2002.

[13] C. Phillips and L. Swiler. “A graph-based system for
network-vulnerability analysis,” Proceedings of the
New Security Paradigms Workshop, pages 71-79,
Charlottesville, VA, 1998.

[14] R.W. Ritchey and P. Ammann. “Using model
checking to analyze network vulnerabilities,”
Proceedings of the 2000 IEEE Symposium on Security
and Privacy (Oakland 2000), pages 156-165, Oakland,
CA, May 2000.

[15] P. Ammann, D. Wijesekera, and S. Kaushik.
“Scalable, graph-based network vulnerability
analysis,” Proceedings of 9th ACM Conference on
Computer and Communications Security, Washington,
DC, November 2002. References

 [16] S. Noel, B. O’Berry, C. Hutchinson, S. Jajodia, L.
Keuthan, and A. Nguyen. “Combinatorial analysis of
network security,” Proceedings of 16th Annual
International Symposium on Aerospace/Defense
Sensing, Simulation, and Controls, Orlando, Florida,
April 2002.

[1] M. Bishop. "Computer Security: The Art and Science,"
Addison-Wesley, 2003.

[2] J.S. Shapiro. “The practical application of a decidable
access control model”, Technical Report SRL-2003-
04, John Hopkins University, 2003.

[3] H.R. Shahriari, R. Sadoddin, R. Jalili, R. Zakeri, and
A.R. Omidian. “Network Vulnerability Analysis
through Vulnerability Take-Grant Model (VTG),” To
appear in Proceedings of 7th International Conference
on Information and Communications Security
(ICICS’05).

[17] D. Zerkle and K. Levitt. “NetKuang - A multi-host
conuration vulnerability checker,” Proceedings of 6th
USENIX Security Symposium, San Jose, California,
pages 195-204, July, 1996.

[18] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs.
“Efficient minimum-cost network hardening via
exploit dependency graphs,” Proc. 19th Annual
Computer Security Applications Conference, pages
86-95, December 2003.

[4] A.K. Jones, R.J. Lipton, and L. Snyder. “A linear time
algorithm for deciding security,” Proceedings 17th
Annual FOCS Conference, pages 33-41, Houston,
October 1976. [19] R.S. Sandhu and C.S. Suri. “Non-monotonic

transformation of access rights,” Proceedings of the
IEEE Symposium on Security and Privacy, pages 148-
161, 1992.

[5] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman.
“Protection in operating systems,” Communications of
the ACM, 19(8), pages 461–471, August 1976.

[6] X Zhang, Y Li, and D Nalla. “An attribute based
access control matrix model,” Proceedings of the 2005
ACM symposium on Applied computing, 2005.

[20] P.E. Ammann and R.S. Sandhu. “One-representative
safety analysis in the non-monotonic transform
model,” proceedings of 7th IEEE computer security
Foundations Workshop, Franconia, NH, USA, pages
138-149, June 1994.

[7] M. Bishop. “Conspiracy and information flow in the
Take-Grant protection model,” Journal of Computer
Security, vol. 4(4), pages 331-360, 1996. [21] M. Koch, L.V. Mancini, and F. Parisi-Presicce.

“Decidability of safety in graph-based models for
access control,” Proceedings of 7th ESORICS, volume
2502 of LNCS, pages 229-243, 2002.

[8] M. Bishop. “Practical Take-Grant Systems: Do They
Exist?” Ph.D. Thesis, Purdue University, 1984.

[22] R.J. Lipton and L. Snyder. “On synchronization and
security,” Demillo et al., editor, Fundamental of
Secure Computation, Academic Press, pages 367-385,
1978.

[23] M.V. Tripunitara and N. Li. “Comparing the
expressive power of access control models,”
Proceedings of 10th ACM Conference on Computer
and Communications Security, Washington, DC, USA,
pages 62-71, October 2004.

[24] A.R. Sharafat and M.S. Fallah. “A framework for the
analysis of denial of service attacks,” The Computer
Journal, Oxford University Press, Vol. 47, No. 2,
pages 147-162, 2004.

[25] J. Mirkovic, and P. Reiher. “A taxonomy of DDoS
attack and DDoS defense mechanisms,” ACM

SIGCOMM Computer Communication Review, 34(2),
April 2004.

[26] M.R. Garey, and D.S. Johnson. “Computers and
intractability: A guide to the theory of NP-
completeness,” W.H. Freeman, New York, NY, USA,
1979.

[27] S.A. Cook. “The complexity of theorem proving
procedures,” Proceedings of 3rd Annual ACM
Symposium on the Theory of Computing, New York,
pages 151-158, 1971.

[28] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.
Wing. “Automated generation and analysis of attack
graphs,” Proceedings of the 2002 IEEE Symposium on
Security and Privacy (Oakland 2002), Oakland, CA,
May 2002.

