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Abstract: One of the most challenging problems in 
security is the safety problem in which we should determine 
whether a subject can gain access to an object or not. Many 
approaches have been proposed to address this problem. 
Nevertheless, most of them lack the ability to model real-
world systems or suffer from efficiency problems. In this 
paper, we propose a general graph-based protection 
system. In addition to monotonic rules, both non-monotonic 
rules and rules which may check for absence of rights as 
their preconditions are included in our model. Moreover, 
broad range of vulnerabilities including most of DoS 
vulnerabilities can be modeled via these general rules 
easily. It is proved that the safety problem in general form 
of our proposed model is NP-Complete. However, we 
introduce some simplified cases of the model, such as 
monotonically increasing systems and systems which 
contain only permanent rules, in which the safety problem 
can be answered in polynomial time.  
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1. Introduction. 
Safety is one of the most important problems in many 
systems especially computer-based ones. Determining 
if a system is in a safe state or not is usually 
considered as the safety problem. Safety problem is 
important mainly because of its extensive use in many 
security issues such as access control systems, 
intrusion detection systems and etc. Another 
important issue, that safety problem can also help in, 

is the vulnerability analysis. A specific failure of the 
controls is called vulnerability which may allow 
unauthorized access to attackers [1]. Thus, 
vulnerability analysis deals with specifying, 
designing, and implementing a computer system 
without vulnerabilities, discovering unknown 
vulnerabilities and detecting possible exploits of 
vulnerabilities. To solve the safety problem, usually a 
model is needed which is called Protection System. 
Knowing all of these, we can define the safety 
problem more formally as the following question: 
“Given an initial configuration of a protection system, 
whether subject s can obtain access right r on object o 
or not.” In fact, we desire to prevent an unwanted or 
unreliable subject to achieve a right which it did not 
already have [2].  

As already mentioned, the first step to solve the 
safety problem is to construct a protection system. 
Ideally, the proposed protection system should 
address all aspects of real-world systems with some 
reasonable assumptions and the safety problem also 
should be solvable in a reasonable time. Till now, 
some protection systems were proposed 
[1][2][3][4][5][6][7][8], however simplifications and 
restrictive assumptions have made most of these 
models far from real systems.  

In almost all of these models, there are only some 
limited rules. Many of them contain only increasing 
rules that is the rules which can only add rights or 
other entities to the model. We call these models 



 

monotonic. A few numbers of existing models 
contains decreasing rules in which only some 
accesses (or other entities) will be removed. However, 
there are many cases in which some goals or new 
access rights will not be achieved unless some other 
access rights are removed (denial of service attacks 
are good examples of this.) Thus, some rules are 
needed which are both increasing and decreasing at 
the same time. In other word, we need rules which 
can add to and delete from the model simultaneously. 
Another important shortcoming of most existing 
models is the lake of rules which check for non-
existence of rights (or other entities) in their pre-
condition parts. Some of the existing models are also 
weak in simulating nodes properties. Many of them 
can note define a specific property or vulnerability for 
a node. Attribute-based models are of the few ones 
which have tried to solve this shortcoming [6]. Based 
on the knowledge of the authors, none of the 
previously proposed models contains all of the 
mentioned properties at the same time. Almost all of 
them either are not general enough or can not be 
simplified to more practicable models. 

Obviously there is a trade-off between the 
generality of the model and the complexity of the 
safety problem in it. This is confirmed in [9] too. 
Thus, in this paper, we propose a new general graph-
based protection system which contains all the 
mentioned properties at once with the least possible 
complexity. We also show how our model contributes 
to analyze some vulnerabilities more easily. It is 
proved that the safety problem in this general model 
is an NP-Complete problem. Also, we show how the 
model can be simplified to some polynomially 
solvable sub-problems. As an example, it is shown 
how to solve the safety problem in polynomial time 
for monotonically increasing systems. The model 
actually is designed in a way that one can simplify it 
for his/her own use. It is worthy to note that 
simplifications in some models, such as HRU [5], 
make it weak in modeling real system efficiently. 
However, we try to preserve important properties in 
simplified models. This may lead to more practicable 
cases.   

The rest of this paper is organized as follows: at 
first, we summarize related works in section 2. In 
section 3, we define our protection system and 
provide the formal definition of the safety problem in 
the model. The polynomially solvable sub-problems 
are discussed in section 4. In section 5, we prove the 

NP-completeness of the general problem. Finally, 
conclusion and future works are included in section 6. 

 
2. Related Work. 
 

In [5], Harrison et al. proved that the safety 
problem in its general form is undecidable. However, 
in addition to considering some unnecessary 
assumptions in their model, the negation of a 
condition is not allowed too. That is, one can not test 
for the absence of an access right as a command’s 
(rule’s) precondition [1]. Later works showed that in 
some constrained cases, not only the safety problem is 
decidable but it can also be answered in polynomial 
time (and in some cases in linear time.)  

Jones et al. in [4] proposed Take-Grant model in 
which the safety problem is decidable in linear time. 
However, the Take-Grant model is not close enough 
to the real-world systems [2]. Several applications of 
this model with some extensions have been explored 
in [2][3][7][8][10]. Frank and Bishop in [10] 
presented the notion of cost to generate the most 
likely paths for information and rights transfer. 
Shapiro in [2] introduced a new access model based 
on Take-Grant called diminish-take including a new 
fundamental rights-weakening operation called 
diminish.  It was shown that safety in diminish-take 
model is also decidable in linear time. Shahriari et al. 
in [3] extended the Take-Grant model and added some 
rules, which are standing for the vulnerabilities 
explosion, to be used in network vulnerability 
analysis. This way, their model which is called 
Vulnerability Take-Grant (VTG) would be able to 
model some vulnerabilities and their exploits such as 
buffer overflow, weak password, and etc. 

Graph-based techniques have been used in several 
works for designing protection system 
[3][11][13][14][15][16][17][18]. Polynomial time 
solutions to safety sub-problems were also proposed 
in some of them [3][15][16][18]. Nevertheless, most 
of the previous researches on protection system have 
been focused only on monotonically increasing 
systems. In a monotonically increasing system, state 
of the system can only be changed by adding new 
access rights. This makes the safety problem much 
simpler and that is why all the mentioned works have 
considered monotonically increasing systems. 
However, considering only monotonically increasing 
rules in a model makes it weak in dealing with real 
systems. To overcome this shortcoming, Sandhu and 
Suri in [19] proposed a formal model called Non-

 



 

Monotonic Transformation (NMT). They showed 
how to implement the model in a distributed 
environment, using the client-server architecture. 
Later, Ammann and Sandhu used the NMT model to 
analyze the safety problem in [20], but their model is 
not general enough since it contains few numbers of 
rules. In [21], another graph-based non-monotonic 
model has been proposed in which rules either 
remove or add graph structure but does not do both 
simultaneously. 

Maybe the only models which have completely 
considered non-monotonic systems are those in which 
model checking techniques are used [11][12][14][28]. 
In this approach, an abstract model of the designated 
system is usually constructed, and then security 
constraints are specified formally. Finally, a model 
checker checks if the model meets the specified 
security constraints. Ramakrishnan and Sekar in [11] 
used this approach to analyze a UNIX operating 
system configuration vulnerabilities. Jha et al. 
followed a similar approach in [12] using automatic 
generation tools to construct attack graph model.  

These proposed methods have the advantage of 
being independent of the rules’ types and their 
complexities. That is, they can support all kinds of 
rules in the same way. Nevertheless, the major 
problem with using model checkers is the scalability 
problem. At the time of the writing this paper, model 
checkers are not even able to check a model of 
middle-size real-world systems in a reasonable time. 

Another part of related works contains the 
theoretical aspects of more general models such as 
complexity of the related problems to the safety 
matter. Harrison et al. in [5] showed that the safety 
problem is undecidable in its general form. They also 
proved that the safety problem will be decidable in a 
mono-operational protection system or in systems in 
which creation of a node is not permitted. Lipton and 
Snyder in [22] proved that safety will be decidable if 
the number of subjects is finite. Other special cases of 
their model were introduced later which were not 
only decidable but some of them also had polynomial 
solutions. Koch et al. showed that safety will be 
decidable in their graph-based model for access 
control if each rule either deletes or adds graph 
structure but does not do both [21]. Considering an 
access control system as a state-transition system, 
Tripunitara and Li introduced an idea to compare the 
expressive power of access control models in [23]. 

 

3. Model Specification and the Safety 
Problem. 

 
Harrison et al. in [5] proposed a formal 

specification of a protection system and tried to define 
a generalized form of the commands (rules). The 
following specification is inspired by their work and 
the work done in [3], but the model proposed here is 
more general in some aspects than theirs. We have 
also made some relaxations to simplify the model and 
its related algorithms.  

The protection system PS is defined as a triple (G, 
R, P), where G is the initial modeling graph, R is the 
set of rules, and P is the set of predicates which 
specify the security policy. Next few paragraphs are 
devoted to discuss these three parameters.  

For the sake of simplicity, we define edges as 
triple (v, u, l) in the graph G, where v and u are source 
and destination vertices, respectively, and l denotes 
the edge’s associated label. For example, the edge (v, 
u, read) differs from the edge (v, u, write). This way, 
we do not need to deal with labeling issues in the 
algorithms. Similar to VTG, vertices may have 
vulnerabilities. To handle this, for each vulnerability v 
associated to node x, we use a loop edge on x labeled 
with v. Similarly, we can use a loop edge labeled with 
the nodes’ type. Thus, there is no need for another 
structure to handle nodes’ types. For example to show 
that the type of node n is object, we use the loop edge 
(n, n, object). Another simplification is that there is no 
need to remove a node; instead we can remove all its 
adjacent edges. We also assume that there is no need 
to create new nodes. This assumption makes the 
safety problem decidable in the model (Analogous to 
Theorem 3 of [5].)  

As it can be seen in the previous paragraph, we 
are trying to eliminate any unnecessary structure from 
our model, to keep the structure simple, and to deal 
with different concepts such as vulnerabilities of 
nodes and type of nodes in the same way. All of these 
make the model more flexible to be used in more 
particular protection system.  

To define a rule, we need to introduce edge 
pattern notation. An edge pattern is a triple of (a, b, t) 
where a and b can be matched any vertices of G, and t 
is a label.  
Definition 1. We say edge pattern (a, b, t) will match 
edges (v, u, l) if l and t are the same labels. In this 
case, we say a and b match v and u respectively. 

For example, (a, b, r) matches all edges labeled r, 
or (a, a, o) matches all loop edges labeled o. We can 

 



 

have also star (*) notation in an edge pattern. Edge 
pattern (*, a, m) matches some edges if there exists 
vertex v which every other vertex has an edge to v 
labeled m. In this case we say a match v. (a, *, m) can 
be defined in a similar way. Accordingly, the general 
form of the rules is defined as follows: 
Definition 2. Every rule in R is defined as a tuple (Ee, 
En, Ea, Ed) where Ee and En are two sets of edge 
patterns that indicate which edges should exist/not 
exist in order that the rule can be applied, 
respectively. Ea and Ed are two other set of edge 
patterns. Ea represents new edges which will be added 
to graph G after the rule application. On the other 
hand, Ed indicates the edges which will be removed 
from graph G after the rule application.  

To apply a rule, there should be a match for all 
edge patterns in its Ee and there should not be any 
match for any edge patterns in its En. If this is the 
case, the edges produced by patterns in Ea and Ed 
respecting to the matches found for Ee, will be added 
to and removed from G, respectively. 

This definition is more general than the one 
proposed in [5]. This is mainly because of that the 
latter one considers the patterns set En which 
addresses the edges which should not exist as a 
precondition of the rule. This makes our protection 
system capable of analyzing new types of attacks.  

For example, consider a system running an 
Intrusion Detection System (IDS) to monitor 
activities of some entities. Also assume that the 
attacker A can gain write access to a given object if it 
is not being monitored by IDS, Fig. 1. As shown in 
Fig. 1, the system can be represented in our model by 
a new vertex in the graph in place of the IDS 
alongside with its associated edges, labeled m, to the 
nodes which it is monitoring. Adding the following 
rule can show how an attacker may reach her goal 
formally: 

R = ( ∅, {(*, o, m)}, {(a, o, w)}, ∅) 
 

The new rule implies that if the IDS is not 
monitoring a specific object, called o, then the 
attacker can gain write access to o. 

Based on the knowledge of authors, none of the 
existing models of protection systems proposed 
before are able to model such an exploit, whereas too 
many of such exploits can be addressed in the real 
world. The last part of our protection system is the set 
P which defines the safety problem. The safety 
problem was defined informally before. Here, we 
provide the formal definition.  

 

 
Fig. 1. A simple IDS model. a) Before applying the 
IDS rule. b) After applying the IDS rule. 

Definition 3. Having a protection system (G, R, P), a 
witness is a sequence of rules, r1, r2 … rn,  (ri∈R, 1≤ i 
≤ n) which are applicable to the initial modeling graph 
respectively.  
Definition 4. Let r be an access right and, A and B be 
two distinct vertices in the modeling graph G. 
Predicate can●share(A, B, r, G) is true if and only if 
there is a witness whose application to modeling 
graph G generates a new graph with an edge from A to 
B labeled r. 

Security policy of the protection system PS is 
specified by predicates of P which may be violated by 
applying a witness. We define P to be a set of 
can●share predicates. Note that one can add other 
predicates to this set, but for our intention in this 
paper, can●share is enough. Completing the definition 
of our protection model, we can define the Safety 
Problem as what follows: 

 
Definition 5. Having the protection system PS = (G, 
R, P), the Safety Problem is the problem of finding 
witness w whose application to graph G violates at 
least one of the predicates included in P. 
 

Obviously, there are other predicates which can 
be included in set P. However in our general model, 
they are not required since we can answer most of the 
other predicates by answering the basic predicate 
can●share. As an example, we show how to answer 
can●revoke predicate using can●share. The predicate 
can●revoke can be defined as follows: 
Definition 6. Let A and B be two distinct vertices in 
the modeling graph G and there is an edge between A 
and B labeled r. Predicate can●revoke(A, B, r, G) is 
true if and only if there is a witness whose application 
to G generates a new graph in which there is not any 
edge from A to B labeled r. 
  

To answer this predicate, we can add a new rule 
with following arguments to the set of rules R: 

Ee = ∅, En = {(A, B, r)}, 

 



 

Ea = {(A, B, r' )}, Ed = ∅ 
 

Provided that r' has not been used in any other 
rules, predicate can●share(A, B, r', G) will not be 
satisfied without using the new rule, which involves 
non-existence of an edge labeled r between A and B. 
Thus, predicates can●revoke(A, B, r, G) and 
can●share(A, B, r', G) can be used interchangeably. 
Despite all of these, one may add its own defined 
predicates to the security policy P. obviously in 
special cases of the model, can●share can not 
describe the whole policy and it is obligatory to add 
some new predicate to it.  

 
4. Polynomially Solvable Sub-Problems. 
 
In this section, to show the flexibility of the proposed 
model and its capability to model special systems 
with less cost, we provide some instances of the 
safety problem which can be solved in polynomial 
time. Let’s call the rules which can decrease access 
rights from the modeling graph in the protection 
system decreasing rules. Initially, we can divide 
decreasing rules into two main classes; the rules 
which do not add new access rights to the model, and 
those which add new access rights in addition to 
removing some other access rights. Later we will 
show that we can eliminate the former rules in some 
cases.  
Definition 7. Monotonically decreasing rules are rules 
which only may decrease access rights, that is, Ea = 
∅. 

Most of DoS attacks [24] and also DDoS attacks 
[25] are clear examples of monotonically decreasing 
rules, which may cause some services not to be 
accessible, without adding new access rights to the 
system. For example, consider the SynFlood attack 
which exploits a vulnerability in the TCP protocol. In 
a TCP SYN flooding DoS attack, an attacker sends 
out many SYN messages with forged IP addresses 
(this type of attack is called spoofing). The server 
replies with SYN/ACK messages, but the attacker 
never acknowledges these messages, thereby leaving 
many half-open connections on the server. The 
intruder can continue sending SYN messages until the 
server reaches its half-open-connection limit and can 
not respond to any new incoming requests. Thus in 
the next steps of its attack scenario, the attacker can 
easily forge himself to be the node, which is attacked, 
using its IP address and its flooded port number. 

Definition 8. Simple rules are the rules in which En 
=Φ  and each of the sets Ee, Ea, and Ed contains O(1) 
number of edges pattern.  
 
1. Let list F be the set of all edge of the 

modeling graph P.G. 
2. while (! isEmpty(F)) 
3.  e = head (F) 
4.  Check for all applicable monotonically 

increasing rules which e is involved in. 
5.  foreach (resulting edge like f)  
6.  add f to P.G 
7.  if (f has not been in F before) 
8.    Add f to the list F 
9. Delete e from F 
10. return P 
Fig. 2. Gen_Closure_4MIR: A polynomial time algorithm which 
answers can●share predicate when the protection system contains 
only simple and monotonically increasing rules. 

In other words, applying a simple rule just 
involves checking existence of some edges. The 
second condition makes the application of simple 
rules take O(1) time. Recall that in its general form, 
application of a rule may require the graph not to 
include some edges. Almost all previously proposed 
graph-based models are restricted to simple rules. 
Whereas, there are some kinds of exploits in which 
we have to be sure that some edges do not exist in the 
modeling graph such as the IDS exploit example 
described in section 3. 

 
Theorem 1. In a protection system PS = (G, R, P), the 
predicate can●share can be answered in polynomial 
time, if R contains only rules that are both simple and 
monotonically increasing. 
Proof. An algorithm like the one proposed by Frank 
and Bishop in [10] will answer can●share as shown in 
Fig. 2. The proof of polynomial time complexity is 
similar to theirs as well. ▀ 
 
Theorem 2. In a protection system, the predicate 
can●share can be answered in polynomial time, if R 
contains only simple rules, and the rules which 
decrease access rights act monotonically. 
Proof. We prove that monotonically decreasing rules 
are useless in satisfying predicate can●share. We 
show that monotonically decreasing rules can not 
cause to new edges to be added to the modeling graph. 
First of all, a decreasing rule may not add new edges 
directly. Thus, the only possibility is that a 
monotonically decreasing rule causes to addition of 
new edges indirectly. This may occur when the 
precondition of another increasing rule becomes true. 
However, monotonically decreasing rules can only 

 



 

affect the second part of the other rules’ conditions 
which will not be considered in the simple rules at all. 

Therefore in such situations, no new edge will be 
added because of an edge removal and we can simply 
eliminate all monotonically decreasing rules and use 
the closure-based algorithm described above to 
answer the predicate can●share in polynomial time.▀ 
 
Corollary 1. In a similar way it can be shown that if 
all defined rules were simple, then monotonically 
decreasing rules could be removed from the 
protection system. But this time, since there still may 
exist some decreasing rules in the model, we can not 
use the same closure-based algorithm to answer the 
safety problem. 
Definition 8. An edge in a modeling graph is 
permanent, if and only if its associated access right 
will never be removed because of deletion of any 
other edges. 

The definition implies that no matter whether the 
conditions which have caused adding a permanent 
edge still hold or not, it will continue to exist in the 
graph permanently. As an example of this type of 
access right, suppose the attacker A wants to use the 
passwords stored in a file f on a host in its attack 
scenario. As soon as A achieves read access to f, it has 
reached its goal. Even encrypting the password file f, 
will not hide the achieved information from A, 
because A has already read what it wanted. Thus, the 
read access is permanent. Therefore, the only way to 
removing a permanent edge is to delete it directly by 
a rule. 

We will refer to edges which are not permanent 
as impermanent edges. As an example, consider that 
an attacker wants to use a service which needs 
authentication. Suppose the attacker has acquired the 
information of an account for the service. The 
attacker can use the service as long as the promised 
account has not been disabled. Therefore, the 
attacker's access to the service is impermanent. 
Definition 9. A rule is permanent if it generates only 
permanent edges; otherwise it is impermanent. 

Next theorem deals with an interesting property 
of the systems which use only permanent and simple 
rules: 
 
Theorem 3. Let that PS = (G, R, P) is a protection 
system in which all the initial access rights are 
permanent and only the permanent and simple rules 
are allowed. In such a system, the predicate 
can●share can be answered in polynomial time. 

Proof. The main idea is to construct the closure of the 
modeling graph using a conflict graph. The conflict 
graph has one vertex in association with every 
possible edge in the modeling graph and is initially 
empty. We say that two edges in the closure have 
conflict (according to the conflict graph) if and only if 
there exists a directed path between their related 
vertices in the conflict graph. The rule R = (Ee, Φ , Ea, 
Ed) is applicable according to the conflict graph if and 
only if the match found for Ee contains non-
conflicting edges according to the conflict graph.  

Initially the closure is identical to the graph G. In 
each step of the algorithm, we will apply an 
applicable rule according to the conflict graph and 
update two graphs (closure and conflict graphs) as 
follows; Let R = (Ee, ∅, Ea, Ed) be the selected rule. 
To apply R, the edges produced by Ea will be added to 
the closure and all their conflicts will be removed 
from the conflict graph (That is, for each edge e 
produced by Ea, we will remove all the edges 
outgoing from e's related vertex in the conflict graph). 
The edges included in Ed (obviously if there exists 
any) will not be removed from the closure; instead we 
will add directed edges from Ed's associated vertices 
in the conflict graph to those of Ea.  

We will repeat this step until there is no 
applicable rule according to the conflict graph. Thus, 
if there is an edge from vertex A to vertex B labeled r 
in the computed closure, the answer to the predicate 
can●share(A, B, r, G) will be yes. Obviously, the 
algorithm is polynomial because in each step at least 
one edge will be added to the closure. (Note that there 
is no need to consider monotonically decreasing rules 
according to corollary 1.) Since the closure contains 
polynomial number of edges and each step of the 
algorithm needs polynomial time, the time complexity 
of the algorithm will be polynomial too.▀ 

 
5. NP-Completeness Results. 
 
To show the NP-Completeness of the general problem 
we use reduction from 3-SAT [26]. 3-SAT is itself a 
special case of Boolean satisfiability (SAT) problem. 
SAT is the first established NP-complete problem [27] 
and many typical NP-Complete problems can be 
directly reduced from it.   

Basically, SAT problem is either to find a 
satisfying truth assignment of all variables or to prove 
there is no satisfying assignment for a given Boolean 
formula (usually in Conjunctive Normal Form 

 



 

(CNF).) 3-SAT is a special case of SAT in which 
each clause has exactly three literals.  

 
Theorem 4. The safety problem in the protection 
system PS = (G, R, P) is NP-complete if the initial 
edges and rules are not necessarily permanent.   
Proof. As we mentioned, the safety problem can be 
interpreted as finding a witness which makes one or 
more predicates in P true. Therefore, it is clear that if 
we have a witness, it is possible to verify whether the 
witness violates security policy or not in polynomial 
time. That is, the problem is in NP. Note that since a 
witness includes only different rules it size is 
polynomial. To prove NP-Completeness, we use 
reduction from 3-SAT. Let ϕ  be an instance of 3-
SAT problem. We construct protection system PS = 
(G, R, P) such thatϕ  is satisfiable if and only if there 
exists a witness in PS which violates at least one of 
the predicates included in P. 

Corresponding to each clause Ci in ϕ , G has a 
node Ci. There are three vertices yi, xi and x i in G, 
corresponding to each literal xi in 3-SAT problem. 
Graph G also contains two other vertices T and T’. T 
has a specific type called m which is shown by a loop 
labeled m on it. For each literal xi, we add directed 
edges from yi to both xi and x i labeled r.  If the ith 
clause contains xj ( x j), we will put a directed edge 
from Ci to xj ( x j) labeled s and true, and another 
directed edge to x j (xj) labeled false. For each i, there 
is an edge from yi to T labeled notok. This means that 
yet we do not know whether xi has consistent values 
in all of its occurrences. The initial graph which is 
constructed from a sample 3-SAT problem is shown 
in Fig. 3. 

The rule set R contains 5 rules: 
 

1. If clause c contains literal x (a variable or its 
negation), we will assign the true value to x and false 
to its negation: 

Ee = {(c, x, s), (y, x, r), (y, x’, r), (c, x, false)}, 
En = ∅, 

Ea = {(c, x, true), (c, x’, false)}, 
Ed = {(c, x, false), (c, x’, true)} 

 
2. If clause c contains literals x1 and x2 in which both 
have the true value, we can assign the false value to 
one of them and true value to its negation: 
 

 
Fig. 3. Reduction from 3SAT. a) Shows construction of modeling 
graph for formula f = (!x1∨ x2∨ x3) (x∧ 1∨ !x2∨ x3). b) Shows a 
scenario which violate security and also is an answer to 3SAT 
problem (x1 = x2 = false and x3 = true.) 

Ee = {(c, x1, s), (y, x1, r), (y, x’1, r), (c, x1, true),  
(c, x2, s), (c, x2, true)}, 

En = ∅, 
Ea = {(c, x1, false), (c, x’1, true)}, 
Ed = {(c, x1, true), (c, x’1, false)} 

 
3. If literal x has got true value in all clauses which 
contain x, a new edge can be added to the modeling 
graph G from y to T labeled ok, where y is the vertex 
having an edge to x labeled r:  

Ee = {(y, x, r)}, En = {(a, x, false)}, 
Ea = {(y, T, ok)}, Ed = {(y, T, notok)} 

 
4. Just like the previous rule for x’s false value: 

Ee = {(y, x, r)}, En = {(a, x, true)}, 
Ea = {(y, T, ok)}, Ed = {(y, T, notok)} 

 
5. If all literal get consistent values in their related 
clauses, a new edge can be added from T to T’ labeled 
ok which shows that ϕ  is satisfiable (m is the type of 
node T ): 

Ee = {(T, T, m)}, En ={(a, T, notok)}, 
Ea = {(T, T’, ok)}, Ed = ∅ 

 
The construction will be completed by defining 

the set P in protection system PS to contain just the 
predicate can●share(T, T’, ok, G). It is not so hard to 
show that if there exists a satisfying truth assignment 
forϕ , there will be a witness in SP which violates the 
security policy and vice versa.  ▀ 

 
6. Conclusions and Future Works. 
 

In this paper, a general graph-based protection 
system was proposed. Although we showed that the 
safety problem in its general form in the proposed 
model is NP-Complete, but there are still cases in 
which the safety problem can be answered in 
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polynomial time. We introduced ideas of simple, 
permanent, and monotonically decreasing rules 
alongside with some simplified sub-problems of the 
safety problem. We also provided polynomial 
algorithms to solve these problems. We showed how 
the monotonically decreasing rules can be eliminated 
when a system contains only simple rules. We also 
showed that the safety problem can be answered 
polynomially in a system which is restricted to rules 
which are both permanent and simple. 

Investigating more polynomially solvable 
problems can be considered as an interesting future 
work. Especially, relevant problems to impermanent 
rules are worthy of considering more thoroughly. In 
addition, our main goal in this paper was to propose 
the general model itself, but the generality of the 
proposed model may make it impracticable to be used 
in the real world directly. Thus, some adjustments 
should be made on the model to simplify it for one’s 
specific application while preserving its useful 
properties. Simplifying the model by bounding the 
number of access rights, rules, vulnerabilities of the 
nodes, and their types is yet another area of research. 
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