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Abstract: This paper presents an optimal control 

algorithm of an inverted pendulum with Linear 

Quadratic Regulator in which a digital prediction 

observer with deadbeat response is used to estimate the 

unmeasured state variables. Optimal control is a 

powerful algorithm considers the limitations in state 

variables and system actuators. The main weak point of 

optimal control in a practical view is its complete 

dependence in sense or estimation of state variables. A 

digital prediction observer offers the fastest way of 

estimation of unmeasured state variables in a digital-

based control system. The successful results of 

implementing of the proposed algorithm in this paper 

show the effectiveness of the algorithm.. 
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Inverted Pendulum (IP), Optimal Control.  

 

1 Introduction 
 

The inverted pendulum is a classical control 

problem, which involves developing a system to 

balance a pendulum and belongs to the class of 

under-actuated mechanical systems having fewer 

control inputs than degrees of freedom (A detailed 

description of The Inverted Pendulum system is 

considered in [1]). This renders the control task 

more challenging making the inverted pendulum 

system a classical benchmark for testing different 

control techniques (Useful techniques related with 

the proposed algorithm in this paper could be 

found in  [3,4,6,7,9]). There are a number of 

different versions of the IP system offering a 

variety of interesting control challenges. A single 

rod on a cart IP is a rod mounted on a moving cart 

that can rotate on its pivot as shown in figure 1. 

This system has tow equilibrium points that one of 

them is stable (fig. 1.b) and another one is unstable 

(fig. 1.a). 

Stability and un-stability of these equilibrium 

points is simply provable by Liapunov stability 

theory with different methods as in [7,8,11]. With 

the rod exactly centered above the motionless cart, 

there are no sidelong resultant forces on the rod 

and it remains balanced as shown in Figure 1.1a. In 

principle it can stay this way indefinitely, but in 

practice it never does. Any disturbance that shifts 

the rod away from equilibrium, gives rise to forces 

that push the rod farther from this equilibrium 

point. 

 

 
Fig. 1: Equilibrium points 

 

Optimal control is a good choice of existing 

control algorithms for the systems in which state 

variables should be kept in complete restricted 

bounds and also actuators of the system are in 

danger of being saturated or damaged (design of an 

algorithm regardless of energy shaping of the 

system functions in nonlinear systems is frequently 

not useful, [7]-[9]). In order to implement the 

algorithm on a system, all state variables should be 

accessible simultaneously, therefore the estimation 



of some variables is vital in controlling the 

complex nonlinear variables. 

Digital estimation is a software process of 

estimation of some state variables by means of the 

other state variables of the system ([10]). The best 

criterion in design of state observers is how fast the 

estimation error vector of the system tends to zero 

(a useful research in developing the observer can 

be found in [6]).  

The described algorithm in this paper not only uses 

a deadbeat response estimation of the un-

measurable state variables of the system, but also it 

is basically a prediction observer. In other words 

not only the error dynamics of the observed state 

variables tend to zero in the sampling periods less 

that the order of the system, but also because of the 

prediction feature of the designed estimation 

process, it is in one period ahead the supposed 

estimation time duration. 

The paper is organized as follows: Section 2 

presents a brief overview of the complete system 

and deals with the mathematical dynamical model 

of the system. Section 3 goes through the main 

steps in the design of the estimation algorithm and 

their digital implementation and other practical 

issues. Section 4 presents the method of design of 

the observer-based optimal controller and finally 

several conclusions are drawn in Section 5. 

 

2 System Overview 
 

Dynamical equation of an IP is presented in (1) 

where M is the mass of cart; m is the mass at the 

Centre Of Gravity (COG) of the pendulum; I is the 

moment of inertia of the pendulum; l is the 

distance from the COG of the pendulum to the 

pivot; x is the horizontal displacement of the cart; g 

is the gravitational acceleration; θ is the rod 

angular displacement and K and α are the 

coefficients derived from the practical experiments 

of the actual system (A detailed description of 

deriving (1) can be found in [12]). 

These equations deduced from the linearization of 

nonlinear dynamical equations of the system 

around the unstable equilibrium point of the 

system and consequently are accurate only in the 

neighbourhood of the equilibrium point.  
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Implementation of a digital control algorithm on a 

microprocessor system is completely dependent on 

the sampling rate of the state variables. The 

smaller the period of sampling, the more accurate 

will be the estimation of the model of the system. 

In order to increase the sampling rate, a more 

complicated system should be designed which in 

many cases is not desirable or even viable. In any 

ways the sampling frequency should be tow times 

bigger that the Nyquist frequency of the system to 

prevent the folding phenomenon to happen. 

In many systems with observing the minimum 

number of state variables, the sampling frequency 

of the system is small. So the digitalized model 

does not represent an accurate model of the 

system. This problem gets worse when a number 

of state variables of the system are un-measurable 

and should be estimated. In these systems the best 

solution to the estimation problem is to increase 

the dynamic of the estimation error of the state 

variables. In this case the values of the state 

variables are updated in every few sampling 

periods with the measurable state variables, such as 

done in using of the algorithm of digital prediction 

observer with deadbeat response. 

  

3  Design of Digital Prediction Observer  

  with Deadbeat Response 
 

In practice in systems with measured and estimated 

state variables, reduced-order observers are used as 

presented in [10] and a hybrid algorithm is 

considered in [6]. In designing the digital 

prediction observer with deadbeat response for the 

designed Inverted Pendulum system, full-order 

observer is used. This is done because the 



bandwidth of the system with full-order observer is 

less that the reduced-order one. So the system with 

full-order observer has a better high-frequency 

noise-rejection characteristic than the same system 

with reduced-order observer. 

A linear model of the IP dynamics was adopted for 

the purpose of designing the optimal controller: 
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The dynamic error equation of the observer can be 

formulated in form of (3). 

 

)()()1( keCKGke e−=+          (3) 

 

To simplify the procedure of design of the 

observer, the problem is changed to the dual form 

of designing the state feedback in (4): 
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In which v(k) is the state feedback vector. In order 

to have a deadbeat response control system, the 

problem is changed into finding the feedback 

matrix K
*
e  in (5). 
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 Where K = K
*
e . 

Four linear independent vectors can be chosen as 

in (6) .In Inverted Pendulum system n1 = 2, n2 = 2 

where nis are Kronecker-invariant coefficients.  
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Now let fi be the ηith row vector of F
-1

 where: 
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By choosing the row vectors of  f1 and f2 in terms 

of  η1 and η2 rows of  F
-1

,  (8) is deduced: 
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Where: 
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With similarity transformation of the system by T, 

the state feedback gain matrix K is defined as (10). 
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Finally with (11) the error vector shows a deadbeat 

response characteristic: 

 

KK e =*
                       (11) 

 

The important note is that ∆ is not unique. So in 

theory infinite Ks could be taken. But in practice 

optimal control method limits the number of 

choices. 

 

4 Optimal Control Design 

 

If the control process is lasting infinitely, the gain 

feedback matrix of K(k) is a constant matrix. (12) 

is the Performance Index of the system:  

 

[ ]∑
∞

=

+=
0

**
)()()()(

2

1

k

kRukukQxkxJ

      (12) 

 

Where Q is a positive definite or semi-positive 

definite Hermitian matrix and R is a positive 

definite Hermitian matrix. To obtain a solution to 

minimize the performance index (12), the 

following Riccati equation is considered: 
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where P is a Hermitian or a real positive definite 

symmetric matrix. Determining the weighting 

matrices and minimizing these cost equations, 

designs the controller ([10]). The underlying 

question here is how to determine the weighting 

matrices. Many methods have been devised, but 

one effective method is Bryson’s Rule which 

weights each input and output as the inverse of the 

squared maximum desired value ([11]). After 

calculating Q and R, these two costs can be 

implemented and combined to form a controller 

known as the Linear Quadratic Gaussian (LQG) 

controller ([3]). Implementing this type of 

controller would be quite involved since it would 

be necessary to keep track of the state variables 

internally. These internal representations would be 

used to calculate the errors between the 

measurements and expected state variables. The 

error would then be minimized by the Kalman 

filter and the LQR control law would be applied 

using the estimated state variables. By calculating 

P from (13), the gain feedback matrix K is yielded 

with (14). 
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With this K, the following Quadratic performance 

index (15) is minimized. 
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5 Practical Results 

 

The procedures of designing the controller and 

observer discussed in sections 3 and 4 were 

simulated and tested using the digitalized dynamic 

model of the system represented by (2). The 

sampling frequency of the system was deliberately 

reduced to 124 samples per second, where the 

Nyquist frequency of the actual designed  IP 

system is 60 (with regard to nonlinearity 

characteristic of the system).  

In designed IP system:  
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With this K, the error vector of the digital 

prediction designed observer shows a deadbeat 

response characteristic. 

In designed IP system,  
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So in the basis of Liapunov stability criterion, the 

designed state feedback for the system is 

asymptotically stable ([11]).  

The response to the designed feedback gain and 

prediction observer is completely satisfying as 

depicted in Figures 5.1 and 5.2. 

Figures 5.3 and 5.4 depict a result of implementing 

the procedure on a designed IP system. As shown 

in the figures, although the sampling frequency is 

dangerously near the minimum limit of the 

possible frequency to prevent the folding 

phenomenon to happen and the success of control 

process is questionable, because of the prediction 

and deadbeat response characteristics of the 

designed observer, the IP is successfully 

controlled. 

 



 
 

Fig 5.1: Desired pendulum behaviour of the IP 

system 

 

 
Fig 5.2: Desired cart behaviour of the IP system 

 

 

 
Fig 5.3: pendulum behaviour of designed IP 

system 

 

 
Fig 5.3: cart behaviour of designed IP system 

 

 

6 Conclusion 

 
This paper has presented an application approach 

which focuses on the real-time control of a 

horizontally driven inverted pendulum using 

optimal control approach and a digital prediction 

observer with deadbeat response. It has 

successfully been shown that for a class of under-

actuated mechanical systems having fewer control 

inputs than degrees of freedom, like Inverted 

Pendulum, when sampling frequency of the 

measurable state variables is near the frequency in 

which folding phenomenon happens, combination 

of digital optimal control for controller design and 

a digital prediction observer with deadbeat 

response for observer design is applicable and 

effective. The proposed algorithm has been 

implemented on an actual Inverted Pendulum and 

the results show the effectiveness of the algorithm. 
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