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Abstract— In this paper in order to suppress the
effect of model uncertainties and disturbances, a robust
Jeedback linearization control scheme for a large class
of multi-input/multi-output nonlinear systems with
unknown modeling terms based on Lyapunov function
is proposed.

To verify the validity and effectiveness of the designed
method, the suggested technique has been applied to a
Twin Rotor system. The resulls of computer simulations
with MATLAB on the complete system and
implementation on real model for various types of
inputs and disturbances have been presented. The
comparative study of these results with those obtained
in nominal feedback linearization control architecture,
state feedback method and PID controller establishes
the performance of this new control scheme,

Keywords: Uncertain Nonlinear Systems, Robust
Feedback Linearization, Twin Rotor.

1 Introduction

Feedback linearization is an approach to nonlinear
control design which has attracted a great deal of
research interest, but in the practice it suffers from two
major limitations {1].

One shortcoming of this theory is due to that it relies
on a precise model of the system for exact cancellation
of nonlinear terms. Second problem comes from the
fact that it requires certain structural and regularity
conditions such as involutivity or existence of relative
degree. Usually however, feedback linearization
control does not guarantee exact linearization and
robustness in the presence of uncertainties. In the
control sense, two kinds of uncertainties could be
considered: modeling uncertainties including unknown-
model and environmental condition called disturbances
and parametric uncertainties [2].

An often strategy to deal with model uncertainties is
to introduce some kinds of integral action [3]. But in
most cases it is not an easy task to prove that such

control strategy yields robust regulation and signal
tracking in the presence of uncertainties. Besides, there
does not exist a clear procedure to tune the resulting
controller [4].

In the case of parametric uncertainties, adaptive
control has been used as a natural tool and interesting
solution. In 1999 adaptive control design method for
highly nonlinear
systeris has been used with feedback linearization to
regulate the temperature of a bed reactor [4]. The

strategy is an input-output linearizing feedback control
scheme which involves an uncertainties dynamic
estimator.

Considering the disabilities of adaptive methods like
to matching condition, considerable progresses have
been made in robust feedback linearization [5-8]. But
most of them are applicable for single input nonlinear
systems or just in the presence of parametric
uncertainties.

In the past decades, fuzzy logic control, as one of the
most useful approaches for collecting human
knowledge and expertise appeared. Considering the
disabilities explained before for adaptive and robust
based methods, it has been used for plants that are
mathematically poorly modeled or the model
uncertainty in the dynamics is either unknown or
impossible [9]. In some previous researches, adaptive
techniques were applied and adaptive fuzzy feedback
linearization methods were suggested to guarantee
robustness [10-12].

Sliding control has been used as a secondary
procedure with feedback linearization method for
control of uncertain nonlinear systems. In [13] has been
shown that when feedback linearization control failed
to stabilize the uncertain system, by using a sliding
mode control with an appropriate choice of the sliding
surface, the uncertain system can be stabilized.

In this paper we propose a robust nonlinear
controller for a class of MIMO nonlinear system based
on feedback linearization approach. A robust term has
been added based on lyapuanov function. The designed
controller has been applied on Twin Rotor model two
degrees of freedom (elevator and azimuth).

The work is organized as follows. Section 2 presents
a brief review of the input-output feedback
linearizationmethod . In section 3 the mathematical
model of Twin Rotor has been proposed. In section 4
the controller design based on feedback linearization
has been done.

Section S presents the modifications onthe basic
feedback linearization method to suppress the effect of
model uncertainties and unmeasured disturbances.

In section 6 the results of computer simulation using
MATLAB and the implementation of the proposed
controller on a Twin  Rotor model (laboratory
helicopter) are presented. Finally the work is closed
with conclusions in section 7.

2 Feedback Linearization

The input-output feedback linearization technique is
based upon linearized relationship between input and
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output. Without loss of generality, the multi-input (m)
multi-output (m) nonlinear system of the form below is
considered:

,gr= o)+ g (xnu, + ..+ g, (xu, (1)
¥, = h(x)
Vm = h,(x)

where xe A" is the state vector, f.,g,/'s are
smooth vector fields and ,/?'. ’s are smooth scalar
functions in A" . The control and output vectors are
represented by

u=[uy,u, 1, y=[¥,y,] (bothe A™).

The input- output linearization of the system by
equation (1) is achieved by differentiating the outputs y
with respect to time until the inputs appear explicitly.
Thus, by differentiating y, we have:

y,=Lh,+3 (Lyh)u, j=l.,m 2)
If Lg[L(fr"_])h/.(,r) =0 for alli, the inputs do not

appear in equation (2) and further differentiation shall
be repeated. Assume that r, is the lowest integer such

that at least one of the inputs will appear in yi.r-"’ , which
means:
Y = L+ L, (L7 h ), ()

i=1

where L",h(,r) i1s called the Lie derivative of

Lk[“h(,r) along the vector field f , and 1t is assumed
. . r—1

that for at least one/, 1<i<m, L, L7 h(x)#0

holds. This procedure is repeated for each output Y, In

the above derivation if above conditions hold at y= I

1 to r, (correspond to y, 10 y, ) are relative degrees for

the MIMO system defined by equation (1).
Define the matrix E as follow:

(L, L%%, .. Lg. L7 A ] @)
[ L, L7 7h, o L, LN, |
then the equations of (3) can be rewritten as follow:
¥ ] LY A ) T u, (5)
= + £ )
v Lok, (1) | u

m m

If E is nonsingular for a given point x, then the
(decoupling) control input [1] can be written as:
L' h () v,
u=-£" + £ (x)
Lrh, (x) v

(6)

n
T g 3
where [v,,...,v, ] are the new set of inputs which

can be defined by designer. The resultant dynamics

after applying equation (6) to MIMO system is given
by,
wl [ (7)

After achieving the decoupled and linear model, now
each control goal could be accessible applying
powerful linear control methods to equations (7) which
are linear and decoupled.

3 Model Description of Twin Rotor

Among autonomous flying systems, helicopters have
particularly interesting dynamic features. The main
difficulties in designing controllers for them follow
from nonlinearities and couplings [15]. Another
problem is that the inputs are not directly applied
torques or forces.

Twin Rotor laboratory system has been shown in
figurd .

&

Figure 1: Sketch of the helicopter model

The model consists of a body carrying two DC
motors which drive the propellers. The controls of the
system are the supply voltages of the motors. Both
body position angles, 1.e. azimuth angle in horizontal
plane and elevation angle in vertical plane are

- influenced by the rotating propellers simultaneously.

The measured signals are the two position angles that
determine the position of the beam in space. A
dedicated I/O board allows for control, measurements
and communication with a PC. The RT toolbox in the
MATLAB environment is used to perform real-time
experiments.

3.1 Helicopter Body Dynamics in the
Horizontal Plane (Azimuth Subsystem)

Figure 2 shows a sketch of the helicopter body seen
from the above.

Figure 2: Twin Rotor seen from the above

By balancing the torques acting on the body in the
horizontal plane, as shown in figure2, it can be written:

l,o=r1,-7;-71, (8)
where,

¢ - Azimuth angle (Rad), 1,/, - Moment of Inertia (kg m)
T/ ¢ Friction torque(Nm), 7, : Main rotor reaction torque (Nm)

T, : Torque generated by the side rotor (Nm)

3.2 Helicopter Body Dynamics in the Vertical
Plane (Elevator Subsystem)
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Figure 3 shows a sketch of the helicopter body seen
from the side.

[ i . - 1 I,
Figure 3: Sketch of the helicopter model seen from the side

By balancing the torques acting on the body in the
vertical plane, as shown in figure3, it can be written:

1Y =17,+c, +7,;-7T,-7, (9)
where,

- Elevation angle (Rad), T - : Gyroscopic torque (Nm),
G q
Tf: Friction torque (Nm), Im - Moment of Inertia (kg m),

T, : Lift torque generated by the main rotor (Nm),

7. Centrifugal torque (Nm),

T, Torque generated by the mass of the body (Nm)

Combining the system denoted by equations (8), (9),
motors, propeller and sensors models yields the

complete  helicopter body dynamics [14] in
formr= f(xu), y=g(x):
;v(frs,sin( A K (a0 80SC 2y )) = By, s+ @l 4 b,

Ay
! 8
T—:(u, -4y - 270
'
i3
)y = e
AN l—(—ﬁw.x'ﬁ—{f,#u,+,|,‘}+a:,r.,'+b:,r7)
1, T,

v
fl

T—'T(u: -5 - 27,2y)

| T
— a0 - e, -
T { T I yjl J

K
gl = (”' Ony 'V“'] (10)

Ak, + v,

where,

k(p : Azimuth angle offset, y,/) . Azimuth angle read by sensor

yw . Azimuth angle offset, v, Elevator angle read by sensor
k,

U, . Control voltages applied to rotors

Elevator constant, y,/, : Azimuth angle oftset

4 Feedback Linearization Controller

In this section we try to design a controller using
feedback linearization approach for Twin rotor. For the

first output | (the elevator angle), relative degree is 4

and for the second output Y, (the azimuth angle), it is

2 which cause the matrix E(x) mentioned by equation
(4) be singular and the control law described by
equation (6) could not be calculated. It shows that the
MIMO model of Twin Rotor is non-linearizable and
now in order to cope with this difficulty, dynamics
extension can be considered. It means that integral
actions shall be added for some inputs. Applying this
method causes the relative degrees to change so that
results nonsingular E(x). For example we can add two

integrators for 2, which results nonsingular E(x),

but 7, changes to 6. It means that the resultant controller

will be in higher degrees and complex. As a
consequence, the implementation will be impossible
practically (because of sampling time constraints).
Meanwhile in this methodology zero dynamics appear
which requires more consideration for stability and
make more difficulties. In this paper we have
considered another solution for above problem. We
consider two separate subsystems (elevator and
azimuth) which have interface on each other and then
we will design the controller using feedback
linearization method separately.

Theoreml. Assume that the system - I(x,u)>
v = g(x) has relative degree r and its zero dynamics is
locally asymptotically stable. Let
d(p)=F +a, p' " +..+ap+a, bea Hurwitz
feedback  law

(-LhD-a,, Lf'f_'h(,r) —.—a L (D) +ah(n)

polynomial.  Then the state

1
TR
il
leads to a locally asymptotically stable closed —~loop

system. Proof in [1].

4.1 Controller Design for Elevator Subsystem

The relative degree of elevator subsystem derived
from equation (10) is 4 and this system satisfies the
feedback linearization conditions. Using the theoreml
and applying the resultant control law results the output
and control effort shown in figures 4.1.a, 4.1.b
(simulation with MATLAB), 4.lc and 4.1d

_(implementation).

T g e A L It

Figure 4.1: FL' controller applied to Helicopter (Elevation
subsystem) {simulation and Implementation]

4.2 Controller Design for Azimuth Subsystem

The relative degree of azimuth subsystem derived
from equation (10) is 4 and this system satisfies the
feedback linearization conditions. Using the theoreml
for controller design and applying the resuitant control
law results the output and control effort shown in
figures 4.2.a, 4.2.b (simulation with MATLAB), 4.2.c
and 4.2.d (implementation).

" Feedback Linearization
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Like to elevator controller, for both simulation and
implementation on model, minimum order linear
observer has been used. The set point has been changed
in simulation and implementation and tracking problem
has been considered for both subsystems. Meanwhile in
simulation the disturbance has been applied in time
135(s) to elevator subsystem and in time 168(s) to
azimuth subsystem.
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Figure 4.2: FL controller applled to Helicopter (Azimuth
subsystem) [simulation and Implementation]

As it has been shown in figures 4.1.a and 4.2.a,
steady states error has been occurred in outputs because
of ignoring the interfaces of subsystems (uncertainties)
in controller design. Meanwhile both systems show low
robustness encountering to unmeasured disturbances.
The bad effect of interaction between two outputs of
systems is considerable when one of them changes.
Implementation of FL controller has been done on
MIMO model of Twin Rotor using RT toolbox of
MATLAB and by taking 0.01(s) as the fastest sampling
time considering the bode diagram of subsystems and
hardware constraint.

As it is shown in figures 4.1.c and 4.2.c, steady state
error has been occurred both in elevator and azimuth
subsystems. Meanwhile large interaction between these
two subsystems is considerable when one of outputs
changes. It should be noted that using this controller
leads to low robustness encountering applied
disturbance caused by changing the position of the
gravity center of the body via related step motor. In
order to show the above statement, the experiments
have been done via proper control input applied to
relevant step motor. The result is presented in figure
4.3.
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Figure 4.3: studymg the robustness of FL controller in the
presence of changing the center of gravity of model

As it has been shown in figure 4.3 when the center of
gravity changes, a steady state error appears in outputs
which implies that nominal FL. method is not robust
encountering internal disturbances. More experiments
have been done on model using FL controller, show
that this controller is not robust encountering
unmeasured disturbances applied to system via hand
flaps to the body.

5 Robust Feedback Linearization

In this section we propose a control law including
feedback linearization controller and robust term
achieving from lyapunov function to overcome the
effect of unknown parts of model and unmeasured
disturbances.

Assume the SISO system in form:

P [+ AL () + g () + Ag (D] an
y=h(r)

where Af(.t), Ag(x) show the modeling errors and
unmeasured disturbances [16]. Assume the relative
degree of system to be r. Applying diffeomorphism
transformation ¢(.r) = (£,77)"  to
results:

B
s ==
S

£ _
S -l TSy

equation  (11)

AN
~

RS
1

E,. = o)+ AF () +[Glr) + AG()]u

= e (12)

yv=2£,
Now considering feedback linearization control law as
u= G "(v— #) and applying it to equation (12)
gives:

f|“:V+AF+AG,G‘_](V—F) (1'\)

n=g(.7)
The equations (13) can be written as:

E= AE+bv 4 bA(xv) (14)

7= 9(.7)

where A(r,v) = AF+AGCG ' (v— /) and A, b
are in Brunovskey canonical form. We consider final
control law includes robust and linearizing terms as:

vV=v, +V, (15)
v, can be designed using control law by theoreml. By
defining the error as:

e=¢-Yq s Ya=[Va: yit’ ,}() Y (16)
we can rewrite the equation (14) for error which gives:
e=Ae+bv,+bA a7
where 4 = A-blca,,....a,_].

Now we suppose the lyapunov  function

as/{e)=e’ Pe, where P is the positive definite
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answer of lyapunov equation: pd, + 4 p+ Q=0
where -Q is symmetric negative definite matrix

(assume -I).
Derivation of the considered lyapunov function is:

V=-e"Oc +2e"Pb(v, +4) (18)
Assume thatlﬂ,! < ¥ . Now considering the worst case
in equation (18) results:

~e"Qe+2e"Pb (vy+y), e Pb>0

. : i (19)
~e"Qe - ZeZPb|(vﬁ—7/) . e Pb<0

Vo=

In order to have QV< 0, v, is obtained:

o = {— y(r,t)—a , e"Pb >0 20)
y(nt)+a , e Pb <0

where ¢ is positive constant. The above form for

negative v

robust term  guarantees  the

(GVS —'Qe—a <0) and global stability achieved. The
above form of robust term means lv A,‘ 2.

Now inspired by the equation of A and writing
recursive equations we can write:
Welarsace v, - Al+acely @D
Finally the ¥ can be expressed as:
NAF+AGG (v, — FA)|
TN

In order to prevent the chattering the robust term can be
written as:

r(nt) (22)

e Pb
o |e"Pb|
R

e’ Pb

(7(,r,t)+a),‘eTPbi>5 (23)

(r(rn)+a)  |e' Po|<e

As it has been shown, inspired by the lyapunov
function and designing the robust term according to this
consideration, the error globally converges to zero. It
means that the output will track the desired input
completely and the steady state error will not occur.
Meanwhile all of the state variables remain bounded.

All of the above statements can be written for MIMO
systems.

6 Simulations and Implementation

Using the controller designed in section 35, for both
subsystems and applying it helicopter model, both in
computer simulations and hardware implementation,
results the advantages we expected as goal. As it has
been shown in figure 5 (The disturbances have been
applied in 135(s) to elevator subsystem and in 168(s) to
azimuth subsystem) using the robust controller for
simulation with MATLAB, causes both subsystems to
overcome the effect of model uncertainties and
unmeasured disturbances. Steady state error has not
been occurred and overshoot is the lowest and other
responise characteristics are better in comparison with
nominal FL or linear controllers.
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Figure 3: Robust feedback linearization method applied to
helicopter model (simulation results)
The powerful results of implementation of proposed
controller on helicopter have been shown in figure 6.
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Figure 6: Robust Feedback Linearization applied to helicopter
(implementation)

As it has been shown in figure 6, complete tracking
is achieved by utilizing modified controller (Robust
FL). Meanwhile overshoot and other system response
characteristics are better than FL controller,

Using  this  controller leads to  robustness
encountering the disturbance caused by changing the
position of the gravity center of the body. In order to
show the above statement, the experiments have been
done by changing the center of gravity via proper
control input applied to relevant step motor. The result
is presented in figure7.

o) ) e 3 g

B 1 Do
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Figure 7: RFL controller applied to Twin Rotoencountering
internal disturbance
As it has been shown in figure7 despite of what has
been obtained for nominal FL, system with the
designed controller rejects the effect of disturbance
successfully. The characteristics of time response are
well.
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For more clarification the result of applying a well
known industrial controller (PI1D) is presented by figure
8. The coefficients of this controller have been adjusted
by manufacturer as the best adjustment. It can be seen
that the results which obtained via our controller are no
worst that the PID ones. For our controller the speed of
response is more that PID response, but it seems that
the PID response is better than Robust FL in overshoot.

i)
o i
=

Figure 8: PID controller applied to Twin Rotor

7 Conclusion

In this paper we proposed a robust controller via
feedback linearization approach and lyapunov function
in order to overcome the effect of modeling errors and
unmeasured disturbances. The effectiveness of  the
designed controller has been tested by applying to Twin
Rotor (laboratory helicopter) model. Analysis of the
results indicated the good performance and advantages
(obviation the steady state error, rejecting the effect of
disturbances and desired time response) of the
proposed robust controller in comparison with nominal
feedback linearization or state feedback. Meanwhile the
results are no worst than what have been obtained by
well known classic controllers like to PID. Of course
the obtained results indicated that the designed robust
controller was not successful in overcoming the
interaction effect of two outputs completely.
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