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Abslract- In this paper, position control has been designed
for a 3 DOF actuator redundant sphericnl paral lel
manipulator. A two norm minimization approach has been
used to resolve the actuator redundancy problem. Robust
stability of the closed loop system is analyzed considering
uncertaint ies inherent in the dynamic model of the
manipulator. A simulat ion study is also performed to show the
effectiveness of the proposed method. Thc results show the
applicabi l i ty of simple and conventional control lers to control
redundant spherical paral lel  manipulators.

Index Terms - Parallel manipulator, Robust Position
Control, Redundancy, Force Distribulion, Computed Torque.

I. INTRODUCTION

Manipulator control has been the subject of research in
the field of robotics for many years. The highly nonlinear
dynamics of manipulator which includes several factors
such as inertia, Coriolis and Centrifugal effects, gravity or
friction has always been one of the challenging issues in the
manipu lator control problem.
Different classifications have been made in the literature for
the manipulator controllers. An important category which
distinct the rnain goal of the controller is position vs. force
control schemes. Position control was addressed in the
1970 s to develop control schemes capable of controlling a
manipulator's motion in its workspace. These strategies
were found to be inadequate in performing tasks involving
interaction with the environment which led to force control
schemes. A large number of control techniques have been
developed and used in the last three decades performing
either position or force control most of which consider
conventional series or non-redundant manipulators. The
extension of robotics applications to new areas such as
space, underwater and micro-robotics and parallel and
redundant manipulation has brought new challenges in
robotics research Il].
In recent years, parallel link manipulators have been among
the most considerable research topics in the field of
robotics. A parallel manipulator typically consists of a
moving platform that is connected to a fixed base by several
l imbs. The number of l imbs is at least equal to the number
of degrees of freedom (DOF) of the moving platform so that
each limb is driven by no more than one actuatol', and all
actuators can be mounted on or near the fixed base. These

robots are now used in real-life applications such as force
sensing robots, fine positioning devices, and medical
applications [2,3].
Comparing to serial robots, parallel manipulators have
shown to satisfy the same structure and properties in the
dynamic equation. Therefbre, the vast control literature
developed for serial manipulators can be extended to this
class of manipulators [7]. However, the dynamics of
redundant parallel manipulators is much more complicated
compared even to common non-redundant parallel
manipulators.
Parallel manipulators with 3 DOF have been also
implemented for applications where 6 DOF are not required,
such as high-speed machine tools. Recently, 3 DOF parallel
manipulators with more than three limbs have been
investigated, in which the additional l imbs separate the
function of actuation from that of constraints at the cost of
increased mechanical complexity [5]. Although redundant
parallel manipulators have been investigated to some extent
like in [7,8,9] , development of control schemes that could
make use of specific properties of these structures such as
managing the extra degrees of actuation has not received
much attention so far and is still regarded as an interesting
problem in parallel robotics research particularly for
spherical or spatial parallel manipulators.
In this paper, position controI of a 3-DOF redundant parallel
manipulator has been considered in detail. lmportance of
solving the redundancy problem has been highlighted in a
computed-torque redundant position control structure.
Effects of uncertainties in the dynamic model are also
discussed leading to a robust control structure for the
manipulator. The paper is organized as follows: Section 2
contains the mechanism description, while kinematics
modeling of the mechanism is reviewed in section 3. In
section 4 dynamic formulation of the manipulator is
discussed in brief as a key element in model based control
design. The proposed structure for position control of the
manipulator is elaborated in section 5 which is followed by
a detail robust analysis in section 6. Finally, the results are
analyzed using a simulation study.

II. MECHANISM DESCRIPTION

A schematic of the mechanism, which is currently
under experimental studies in ARAS Robotics Lab, is
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shown in Fig. l The mechanism is originally designed by
Vincent Hayward [10], bonowing design ideas from
biological manipulators particularly the biological shoulder.
The interesting features of this rnechanism and its sirnilarity
to human shoulder have made its design unique, which can
serve as the basis for a good experimental setup for parallel
robot research. As shown in figure 1, the mobile platform is
constrained to spherical motions. Four high performance
hydraulic piston actuators are used to give three degrees of
freedom in the mobile platfonn. Each actuator includes a
position sensor of LVDT type and an embedded Hall Effect
force sensor. The four limbs share an identical kinematic
structure. A passive limb connects the fixed base to the
moving platform by a spherical joint, which suppresses the
pure translations of the moving platform. Simple elements
like spherical and universal joints are used in the structure.
A complete analysis of such a careful design will provide us
with required characteristics regarding the structure itself,
its performance, and the control algorithms.
From the structural point of view, the shoulder mechanism
which, from now on, we call it "the Hydraulic Shoulder"
falls into an important class of rcbotic mechanisms called
parallel robots. The orientation angles are limited to vary
between -nl6 and d6. No sensors are available for
measuring the orientation angles of the moving platform
which justifies the importance of the forward kinematic map
as a key element in feedback position control of the
shoulder with the LVDT position sensors used as the output
of such a control scheme. In former studies by the authors,
different numerical approaches have been used to solve the
forward kinematic map of this manipulator [11]
Furthermore, complete kinematic modeling resulting in a
closed-form forward kinematics solution, Jacobian analysis
through a complete velocity analysis of the mechanism, and
singularity analysis are all discussed in detail in [2]. Also,
closed-form dynamic model has been performed in [3] as a
basis for rnodel-based position control schemes.

III. IryDRAULIC SHOULDER KINEMATIC S

Fig. 2 depicts a geometric model for the hydraulic shoulder
manipulator which will be used for its kinematics
derivation. Two coordinate frames are defined for the
purpose of analysis. The base coordinate frame
{A}: xuyozx is attached to the fixed base at point C (rotation
center) with its zo -axis perpendicular to the plane defined
by the actuator base points ArAzA:Ar and an xo -axis

parallel to the bisector of angle lAtCA.4. The second
coordinate frame {B}: x{y424 is attached to the center of the
moving platform P with its z-axis perpendicular to the line
defined by the actuators moving end points (P1P2) along the
passive limb. Note that we have assumed that the actuator
fixed endpoints lie on the same plane as the rotation center
C.
The position of the moving platform center P is defined by:

Figure L The Hydraulic Shoulder Manipulator
Also, a rotation matrix'& is used to define the orientation
of the moving platform with respect to the base frame:

'R,  = R,  (0,  )R" (0,  )R-  (e,  )

lc9-c? c9-s7s0 -s0.& c0s0c€-+s0-s0-l
l : :  ^ ' ^ ' l  : : : : :  i ^ ' l  ( 2 )

=l s0.c0 s0.s0 s0-+c0.c0. s0s0 p0--c0.s0- |
t ' " 1
l-t9, c0,;0, ,qr9. l

where0,,0,,0.are the orientation angles of the moving

platform denoting rotations of the moving frame about the
fixed x,y,andzaxes respectively. Also cdandsd denote

cos(d) and sin(d) respectively. With the above definitions,

the 4 x 4 transformation matrix ''fr, is easily found to be:

u ,  - l ' R o  
' P )

"- l  o r  I
Hence, the position and orientation of the moving platform
are completely defined by six variables, from which, only
three orientation anglesd., 0r,0, are independently specified

as the task space variables ofthe hydraulic shoulder.
The kinematic vector-loop equation for each actuated limb
can be written as:

[ ,  = l  .g .=, tp*-uRoo p,  -  o ,  (4)

where /,is the length of the l"'actuated limb and s, is a unit

vector pointing along the direction of the i" 'actuated l imb.

Also, 'p is the position vector of the moving platform and
'R, is its rotation matrix. Vectors a, and B pi denote the

fixed end points of the actuators (Ai) in the base frame and
their moving end points respectively, written as:

d,=t A, = (1,, sino - lb coso 0)t ,

er= 'A,  = ( - los ina - lhcosu 0) t ,

e .= 'A,  = ( - los ino lhcosc 0) t ,  (5)

eo="An = (losino lbcosc, 0)t ,
and,

' p , = ( o  - l o  - l * ) ' ,

" p , = ( o  l u  - l * ) ' .

(3)

u p =|,p,, p,, p,l ' ( l )
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Hence, the actuator lengths /, can be easily computed by
dot-multiplying (4) with itself to yield:

L,' .1 = 1,' lnpl&o p, - q)'fnp+nRuu p, - a,) (j)

Writing (7) four times with the corresponding parameters
given in (2), (5) and (6), and through algebraic simplifuing,
we obtain the complete kinematic model of the hydraulic
shoulder [12].
For the Jacobian analysis of the Hydraulic shoulder, we
must find a relationship between the angular velocity of the
moving platform, co , and the vector of lirnb rates as the

actuator space variabler, i = [/, i, i, [f , so that:

l = "/ro (8)

From the above definition, it is easily observed that the
Jacobian for the Hydraulic shoulder wil l be a 4x3
rectangular matrix as expected, regarding the mechanism as
an actuator redundant manipulator. The details of the
expression ofthe Jacobians can be found in [12].

IV. FryDRAULIC SHOULDER DYNAMIC S

In this section the dynamic model of the hydraulic shoulder
is derived based on the application of the Lagrange
formulation with d chosen as the vector of generalized
coordinates. The equation of motion can be written as:

d .aL aL
. ( - ) - ^  = r  ( 9 )

tu 'ae '  ae  I
where the Lagrangian function L : T - U is the difference
between the kinetic energy 7 and the potential U of the
system and r* is the vector of the generalized torques. The
kinetic energy can be wriften by adding translational and
rotational contributions as :

. l
T =T(0,0)=:0rtu1(0)e (10)

z
wheredeR'and M eR'"'. Similarly, the potential energy
can be written as:

u =u(0)  (11)
Hence, the Lagrange equations of motion can be rewritten
AS:

d,aT@,?t .  ar(0.q au@)
dt '  Ae Ae A0 a

Using (12), the complete dynamic model of
shoulder can be obtained as:

IuI (il6 + V @, 0) + G(0) = r - r "

(12)

the hydraulic

( l  3)

Where the vectors 9,e,0 are the moving platform

orientation angle, angular velocity and angular acceleration
respectively, M@) is the 3x3 symmetric positive definite

inertia matrix, V(O,e) is the 3xl vector of Coriolis and
centrifugal torques, G(d) is the 3 x I vector of gravitational
torques, r is the 3xl vector of moving platform torques
and r" is the 3xlvector of external torques applied to the

moving platform. Note that the control inputs to the
dvnamic

Figure 2. Geometric model for the hydraulic shoulder

equation is in fact the 4xl vector of actuator forces, F,
which is related to the moving platform torques, r, by:

t  =  J ' ( o ) .F  (14 )

Where -l(9) is the 4x3 Jacobian matrix representing the

relationship between the angular velocity of the moving
platform and the vector of limb rates. The inertia lvlatrix
M(0) is directly given by the expression of the kinetic

energy f @,0). The gravity term is obtained from the

potential energy U (0)by:

ar r@)
G@)= .-

oa

Finally, V(0,0) which characterizes the

( t5 )

Coriolis and

centrifugal torques can be computed from the elements of
the inertia matrix using the Christoffel symbols of the first
type. More details with this respect can be found in former
studies by the authors [3].

V. POSITION CONTROL

A. Problem Definition

In position control of the hydraulic shoulder the moving
platform is supposed to follow a desired trajectory and the
actuator forces required to produce such a motion are
computed. Let 9oQ) be the desired trajectory of the end-

effector orientation angles. Also recall F as the vector of
actuator forces and d as the Cartesian coordinate variables
of the hydraulic shoulder. The vector of l imb's lengths / can
be measured directly using l imb position sensors. Regarding
the fact that no measuring device is available for the
orientation of the moving platform, also having a closed
form forward kinematics map [12], either of the general
position control topologies using inverse or forward
kinematic maps could be used.

B. Inverse Dynamic Control Formulation

The inverse dynamics of the hydraulic shoulder can be
written as followine:
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Where (.rr). is the pseudo-inverse of the transposed

Jacobian matrix of the hydraulic shoulder. This solution is
perhaps the most common among all possible solutions to
the inverse dynamics of the hydraulic shoulder. It is, in fact,
the minimum two norm solution to a constrained
optimization problem with the static equation (14) as its
equalify constraint which minimizes the internal forces of
the shoulder manipulator. It should be noted that other
possible solutions could be chosen for the actuator
redundancy problem to minimize other physical
performance criteria as well as choosing possible null space
forces to accomplish a secondary task such as active
stiffness control while the robot is tracking the reference
trajectory. Details of the solution procedure to the force
distribution problem with different choices of objective
functions could be found in [13]. Rewriting (16) we obtain:

F  =  F ,+  F ,  = (J r ) ' , fM (Q? l+Ur ) - lV (0 ,0 )+G(0 ) )  Q7 )

Equation (17) suggests using E, as a linearizing control and

{ in conjunction with a linear controller. In this technique,

which is mostly known as the computed-torque method, full
inverse dynamics is used to linearize the dynamic equations
supposing perfect knowledge of the dynarnic model. The
linear controller will then guarantee the desired performance
requirements.
Hence, the inverse dynamic control law could be wriften as:

F  = (J ' ) .  M(0 )10 , ,  +  Koe+  K" i f+ (J ' ) .V@,e )+c (p )  (18 )

Where e is the tracking error of the manipulator and K, and

K, are diagonal position and velocity gain matrices.

VI. RoBUSTNESS ANALYSIS

In this section, the stability ofthe closed loop system under
the computed torque control law is analyzed regarding the
uncertainties in the dynamic model of the hydraulic
shoulder. More precisely, the choices of M0 , No , Ko and

K, will be obtained in terms of the bounding functions of

the unknown dynamics to achieve robust stability.
Usually the control law given in (17) is modified in order to
consider the uncertainties inherent in the dynamic terms. In
fact, the control law must depend only on the known parts
of the dynamics.
Let:

lu I  = Mo+LM

N =V +G = 1y '0 +AN
( le)

where Mo and N0 are the nominal known parts of the
inertia and nonlinear effects due to the Coriolis and
Centrifugal tems respectively and LM, LN represent the
conesponding uncertainties in each term. The control law
could be rewritten as follows:

r  = J 'F = lv lo() , ,  + K te+ K,A)+ N" (20)

Using the definit ions in (19), the dynamic equation can be
simplified as:

r = J ' F = M ( 0 ) 0 + N ( 0 , 0 )
Combining (20) and (21) we obtain:

M@)d +  N(e ,0)=  M"(eo  +  K pe+ K, i )+  No
Now by defining:

*:[" n.l '

x = Ax+ Brl

- lvl- 'MoK

+ a'|vl(0)

atur@)

And:

q = L M . 0 , , + L N (27)
Moreover, the following inequalities hold for the dynamic
terms taking uncertainties into consideration [4,15]:

m,l s lv l(0)< m,, l

llr"ta, all <a,+a, llxll + a, llxll'

lf'e'all< a, +a,llxll
Where rn,, m,,,  e.0, at,  a2,e,a4 are some posit ive constants

and ll.ll represents the Euclidean norm. Robust stability of

the error system could now be proved using a direct
Lyapunov approach.
Consider:

V ( x ) =  v '  P t

with:
- f , ,

o - I l n t ,, _ ^ I
/ l- L

And:
k =  k  + a k

? v

It can be easily verif ied that the Lyapunov candidate wilt be
positive definite if k,ct > 0. Fufthermore, the uniform lower

and upper bounds of V(x) can be obtained by computing the

eigenvalues of P such that:

(32)

Where:

We obtain:

Where

(2r)

( ) J \

(23)

(24)

(2s)

(26)l
,_ l  0

L- tvl-'M,K o
Iop - l" - l r t

(30)

( 3 1 )

(34)

l  l f  I

z,llxll' s rt(x)s ),,,llxll'

"  
f f i , k

^ '  =  
p * * 1 1 * o 1

) , , = k + m , , ( l + a ' )
Now taking the derivative of (29) we have:

v(x)= vr  1t r t  P + PA+ P)x+2xr  PBrT

Noting that:

Y '  MY =2Y'v, , ,Y

We can simplify equation (34) as:
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1,'I o a't,, l l 'u o],**,1"' '1,
2 la't , ,  at,,  )10 M ) L 1,, l

with:
lak I o I

O = l  
P i l  

|

L 0 k"r,)
Which can be bounded as follows:

v (x) < - 1, (Q)ll'll' + J +'11r., llll"ll' *

1 -

)ae+ Jn "'y*,,ll,l ' +Jr +"'ll"lll lzll
2

Where:
7,(Q)= Min{ako,k,}

Using the above equations, we finally obtain:

v 1*1 <ll*110, - r, ll"ll + r, ll'll' I
Where:

(37)

(3 8)

I ^

f o 
- 

"l l+ a' (ao + m" sup(d, ))
i----------= | l----------

r ,  =  l , ( 8 ) - r l l +a '  ( a ,  +a , ) -  -  a ( l +41+a '  )m , ,  t / t \2  t 4 t )

T ,  =  . l l +  a '  ( a ,  +  a  o )

The following theorem gives the robust stability conditions
ofthe enor system (24) based on the derived results:
Theorem: The error system Q$ is robust against bounded
uncertain dynamics if:

lvI^K = k I
V  P  P  ' '

MoK" = k,I,

and the positive scalar gains kn,k, are chosen

enough.
Proof According to the derived bounds on the proposed
Lyapunov function and its derivative as in (32) and (a0),
and using the Lemma in [a], the error system is uniformly
ultimately bounded with respect to B(0,d) with:

2/o

v . +

Provided that:

and the proposed control law was tested along such a
trajectory. Figures (3)-(4) show the tracking performance of
the proposed control law along the given trajectory for the
moving platform and the legs respectively. The control
gains have been chosen such that the stability criteria are
met. Furthermore, the moving platform tracking error is
depicted in Figure (5).

0  1  2  3  a  5  6  7  I  9  1 0
(sec l

Figure 3. Tracking performance of the moving platform
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Figure 4. Tracking performance of the Legs
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The above conditions are met by increasing the gains
k",k" resulting in an increase in 1, .

VII. SIMULATION RESULTS

In order to verif,i the performance of the proposed method,
a simulation study is performed. A sample trajectory was
considered in the reachable workspace of the manipulator

G- 0 r 2 3 1 5 6 7 S 9 1 0

r (sec)

Figure 5. Tracking Error for the rnoving platform

It should be noted that in general the derived stability
conditions usually lead to conservative gains which may
affect the performance of the system regarding problems
such as actuator saturation. Finally, the proposed control
law was compared to a simple PD control with the sarne

-4yol ,

-  4 /  oT,
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control gains. Figures (6)-(7) show the corresponding
results compared to the robust inverse dynamics control. It
is obvious that the proposed inverse dynamics controller
outperforms the linear controller in tracking the desired
ilaJectory.
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VII. CONCLUSIONS

In this paper, position control has been developed for a 3-
DOF actuator redundant hydraulic shoulder manipulator.
The importance of a proper method for resolving the force
distribution problem has been also discussed. The controller
is simply of the computed torque type. The results are
shown to be superior to a simple linear controller of PD
type. Robustness analysis and simulation has been done in
order to evaluate the application of conventional methods to
control redundant spherical manipulators with a parallel
structure which seem to be prornising for further research in
this field.
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