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Abstract: Iterative learning control (lLC) is a
technique lo make use of the repetitiveness oJ' the
tasl<s a system is commanded to execute in a fixed

finite time interval. In this pqper, we assume that
the system Io be controlled is discrete time and
described by linear state space equations. We
present a PID type iterative learning control
updating lmn with variable coeficients. An optimal
procedure is used lo deterntine the coefficienls of
PID type ILC so that the norm of error between the
output of systems and desired trajectory is become
minimize. The simulation example is included to
illustrate the effectiveness oJ the proposed method.

Keywords: Iterative Learning, PID Controller,
Optimal design Control, Repetit ive Processes.

I Introduction

Mankind tries to extend the abil iry of learning to
the engineering systems. One of these efforts is the
designing and implementing of learning control
systems. Important methods which are available in
the learning control systems and at f irst were
proposed in 1984 tll, are lterative Learning
C ontrol Systems (ILCS).
Motivation of ILCS was where there are many
industrial instances, that the system must do
periodically a certain task. Examples of such
systems are robot manipulators that are required to
repeat a given task to high precision, chemical
batch processes, or more generally, the class of
tracking systems. If the conditions of system work
are the same ih all i terations, then the resultant
errors wil l be equal in the all i terations. Thus by
saving the input of system and resulted errors in
iteration J , we can use of them to determine the

system input for iteration i +l in order to

increase the performance and reducing the error. In
recent decades this subject has been attended by
researchers so much, and very useful developments
have been happened in both theory and practical
implementation. Nowadays this is a professional
field in the control science. Interested readers for
more studying about the subject can refer to Q-al.
The principle of ILCS is that, during the execution
of control algorithm in the 7 th iteration, some data

as errors are recorded. These are used by the
leaming algorithm in the execution i +7 for

improving the control inputs and progressively
reducing the output errors and increasing the
performance of close loop system. Finally after a
number of repeated trials, the system should obtain
an appropriate control input, so that this input
produces the desired output. Therefore the input of
the controlled system can be written as follows:

u.i *yQ) : u j ( i) * Au;a1 (l)

where Auyal(i) is a modifier term and denotes

the change of system input in iteration "l + 1

relative to iteration 7 .

Difference between the presented methods in

ILCS, is that how to determine Aur*1(l), and

determination of Au;11(l) shows the method of

learning which has been used.

'fhere 
are some efforts in [5- I | ] to determine

Au;a1(l) as a parametric optimization problem. In

these studies, have been suggested specific control
laws for assigning Luj+{i). In these control
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laws, there are optional parameters which have
been determined to minimize a given cost function.
In [2], we proposed a new P-fype optimal method
to determine Luia(i). In this paper we extend

this method to PID case.
The rest of the paper is organized as follows:
Section 2 defines our problem. In section 3, this
problem is solved. The convergence of the given
ILC algorithm is analyzed in section 4. In section 5
we give an i l lustrative simulation example. Section
6 contains conclusion.

2 Problem Statement

Suppose the underlying single input single output
(SISO) discrete-time repetit ive system described
by:

x1 ( i  + l ) :  Ax i ( i )  +  Bu i ( i )

t  i ( i ) :  Cxi ( i l

i : O r I r . . . , M  ,  - /  :  0 , 1 , . . .  
( l )

x;(0) : 16

where r € IR", a € lR and y € IR denote the state

, the input and the output respectively. Integer
independent variables i and j respectively denote

the time variable and the operation or iterations
number. Integer M is the time duration of
i t e r a t i o n s . A B a n d C a r e r e a l - v a l u e d
coefficients with appropriate dimensions. The re

is the systems init ial condition, which is assumed
be unknown.

We define the problem of this paper as follows:
Suppose a desired output trajectory yaU) is given.

Util izing the PID strategy, determine the control
input sequence of system (l), such that with
increasing the number of repetition the error
between li0 and ydI) become small as

possible so that the following tracking can be
established:

lim(ya (i) - t lGD: O for i

J * c x l

: I ,2 , . . . ,M 
e)

3 Problcm Solution

3.1 PID Type I terat ive Learning Contro l ler

We consider the following updating law to
determine the input of system (l):

u i "aU) 
: u j( i) + Au;*1 (i)

i : O , I , . . . , M  - I  ,  j : 0 , 1 , . . .  
( 3 )

where Aa;*r(l) is a modifier term.

Flere, according to PID strategy Lu;aU) is

chosen as follows:

i+ l
Lu j +rQ) : hp(i + 7)e i(i + t) + ht(i + \) l_,e i(m)

+ hD(i + 1)(e;(i + 1) - e;(l))

(4)
where:

e iG):  ya( i )  -  y1( i )  (s)

and hp(i +l), 4U *1) and kD{j + 1) are real

coefficients, we call them proportional , integration
and derivative learning gains respectively. These
Iearning gains are variable that is these are
assumed depend on variable 7 and should be

determined in a suitable and optimal manner.

The system (l) is casual, that is the error vector in
iteration 7 which is defined below is independent

of le arning gains in iteration 7 * 1:

e(fl :1e10) e j(2) e;(3) e/M)lr (6)

(T denotes the TransPose)

Here we use this fact for determination the learning
gains as optimal. That is we assume e("r) is known

and we determine the learning gains in iteration

J * 1 so that the following performance index is

min imized:

J(i +r): l le(r + r)ll 'z + x"a!(i + 1)
(7)

+>,ft?Q + 1) + >,Dk2D(i +7)

where:

lle(r + 1)ll' : "r 
(i + l)e(r + 1)

and \p , \7 , \D are Positive weighting

parameters introduced to l imit the values of hp ,h7

and hp.

Physical interpretation ofthe given cost function is
that we wish to close the system output to desired
output trajectory without many large learning
garns,

3.2 Dynamic of  the Error  Vector

We try to obtain the dynamic of the error vector

e(J) .For this purpose from (l) we get:

i - l

xiQ): A'xs * | A'-'-^Bui(h) (8)
h=0
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It is easy to obtain the following relation
and (8) :

Y(j): GpU(j) * Gsrp

3.J Opt imal  Determinat ion of  Learning Gains

Util izing (3) and (4) we get:

ui +tU) : u iU) + kp(j + 1)e;(i + 1)

+ hrQ +Df e/m)
m:7

+hp( i+1 ) (e ; ( i +1 ) -e ; ( ; ) )  (17 )

f rom ( l )

(e)

Y( j ) :

G p :

lQ,i1
v(2, j)

y(i\, j)

y(M,i)

( l  0 )

0
0

0

0

CB
( l  I

CB
CAB

CAzB

CAM-28

CAM_IB

0
CB

CAB

cAM-s8

CAM_28

0
0

:

CAB

CA2B

CB

CAB

u(

)
)

B

0
0

C}

i : 0 , I , . . . r M  _ I

Considering the definition of the vectors

Y(j) , we can rewrite the relations

following compact form:

V(j): {hp(j +r)I + fu(j + 1)rrl

+kD(j +I)Hple(j)

e(;) and
(17)  as

( 1 8 )

where / is identity matrix , H1 and Hp are as

follows:

Using relation (9) we can write:

Y(j +1) - Y(j) : GpU(j + 1) + Gsrs
-GPUU) -Goro

or:

Y(j + 1): Y(r) +GpV(j)

where:

(  1 2 )

V( j ) :UU+1) -u( j )

From (12)  we have:

Yd -Y(j + 1): Yd -Y(i) -GpV(i)

where:

(  1 3 )

(14)

Ya:[ya\ . )  yaQ) ya(M)]r  (1s)

Considering the definition of the vectors e(jt) ,

Y("1) and Ya, which are given respectively by

(6), ( I 0) and ( I 5), we get:

e( i l :Yd _Y( j )

Therefore equation (14) wil l become as follows:

e ( . i *1 )  :  e ( j ) -GpV( j )  . /  : 0 ,1 , . . .  ( 16 )

The above equation is the dynamic of error vector
e(j) .

H D :

00
0  0  0 -1  1

Substituting for V("1) from (18) into (16) yields:

e( j  +l) :  G"e( i)  . l  :  0,1,. . .  (20)

0 l  r
H I :

0
1

1
- 1

0

00

1  00
-1  10

where:

G" : I - k r ( i  +1 )Gp  -h t ( i  +1 )G1
- hDU + 1)GD

and:
G t :GPHr  ,  GD:GPHo

The equation (20) is the dynamic of closed
system.

From (20) and (21) it is easY to show:

0
0
1

1
1
I

0
0

0
1
I

1

1

1

0

1
- 1

0
0

00

( le )

(2r)

(22)

loop
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ler <itc[cretil
vtit:ler Utc[ cre<it

l"r titcl,cn"til

J(j + 1) : er (j)e(j) + rcr (j + 1) {A +
,v(j)| K(j + 7) - zar (j)K(j + 7)

(23)

1((j + 1) : lhp(j +7) fu(j  +r) kp(j +r) lr Q4)

[x"  o ol
n= |0  x1  0 l

[0  o  \ r ]
(2s)

"r {i)c[c,"{p i er (i)c|cr"ti)
t ^

e' ( j)Cj G1e(jt  ie '  ( j )Gi Goe(i)

"r rlG$G,r{p i "r {ilc$co"{1>

(26)

o"(, : l"' ri)co"{il n' t1c,"{p nrglcoeti)
(27)

The gradient (derivative) J(7 + 1) respect to

K(j  + 1) is s imply:

:# l1 ]  :2 {L+v( / }  K( j  +1) -2o( ,  (28)
VK(r + 1)

It is easy to show that the following decomposition
for V(.1):

v(.r): nr(j)crcn(i Qs)

where:

fe(i) 0 0 I
EU): l  o  e( ,J)  9 . .1 , "  

: lcp Gr  Gr l  (30)
I 0 0 e(7)l

From (25) and (29) we conclude that the

symmetric matrix {n + VU)i is positive definite

and hence it is invertible, and also its inverse is
symmetric positive definite. 

' Ihus, 
the equation

Y9l1l : s has solution for K(7 + 1).
VK(; + 1)

Solving the equation 
VJ("1 + 1)

VK(r + 1)
optimum value for K(j +I):

yields to

K(j  +1):  {A +, I , ( r } -1o( j )

Using (28), we get:

y*++: ztA + v("r))
YK'( j  +r)

The symmetric matrix {n + VU)} is positive

definite, hence K(7 * 1) causes the performance

index J(J + 1) be global minimum.

4 Convergence Analysis

The ILC algorithm obtained in the previous section
has several useful properties as can be seen as
follows.

Theorem l- For the ILC algorithm defined by
equations (4) and (3 I ):

(a) The performance index satisfies the interlacing
monotonically condition:

lletr)ll'z > r(i +r) > lle(r + r)ll2

with equality holding if and only if:

hp( j  + t ) : l z rU  +1 ) :  hD( j  + r ) :0

(b) The proportional, integration and derivative
leaming gains satisfy the condition:

i {x"a!U + 1) + \rftr2(/ + 1) + \D&3(,r*+ r)} < o,
J:0 

'

(34)
and hence:

/c\ l im
\ - '  J + o o  J - @  J - o o

(35)

Note- (a) states that the algorithm is a decent
algorithm as the norm of the error is monotonically
non-increasing ini, and the 'energy costs' from the
first to the last trial are bounded, whilst (b) and (c)

indicates that the leaming rate becomes slower as
the algorithm progresses to convergence (see
Theorem 2).

Proof:
(a) Consider (7), since Xp , \7 and \D are

positive coefficients we have:

J(j+r)>l le(r+r) l l 'z

with equality holding if and only if i

kr(j +D : fuU + 1) : hp(j +L) : o

Substituting for K(i *1) from (31) into (23)

yields:

J(i + t): ll"(r)ll2 - o"(, {A +,I/(r}-1 oU)

(33)

(3  1 )
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The matr ix {n+VU)}-1 is posi t ive def ini te,

hence if A(j) = 0 or equivalently K(,r + 1) = 0 ,
we conclude:

JU +t)<ll ' i"r)ll2

But, if K(j + 1) :0 we get:

r(j +r): lle(r)llz
(b) From (7) and (33), we have:

l le(i + r)ll2 + x.r!(r + 1) +>,ft?(i +1)
+ >' Dh2D(i + 1) < llr(,,)ll'z

Apply the induction to the above relation, the
following inequality is resulted for all 7 :

^  J ,

lle(r + r)ll'z + | lxru?rrt+ 1) + >' ft? (t + D
l :o '

r>.DkBu + 1))< llero)ll 'z

which proves (b) and hence (c).

r
Theorem 2-  I f  matr ix  Gp which is  def ined in ( l l )

is positive in the sense that Gp + Gf, is positive

definite, then the following iterative learning
conversence condition is obtained:

Hmlle(r)ll: o
J - o o

Proof: .
From (35) and (31) the following result is
obtained:

l imo(  i ) : 0
/ - ; '  

(37)

from (37) and (27) we conclude:

l ime"(  i lG"e( i l :0. \ r , - r - \ r .  -  
( 3 9 )

j  - r n

or:

t imer( i (Gp +G[\eUt:o. t  "  ( 3 9 )

J - c<-t

In summary, by using the updating rule (4) and the
perfonnance index (7), the positivity condition on
Gp ensures that:

(a) The iterative learning control tracking enor

sequence  {e ( j ) : j : 0 ,1 ,2 , . . . }  conve rges  i n

norm to zero, i.e. the iterative learning control
algorithm has guaranteed convergence of
learning.

(b) This convergence has the important property
that the error norrn sequence is monotonic.

5 Simulation Results

To demonstrate the effectiveness of the new
parameter optimization based ILC algorithm which
is defined by (4) and (31), consider a plant having
the following model:

[o.r  o 0.251 [0.51
t t t l

x i ( i+1 ) : l  2  -0 .5  -o .z l x / i )+ l  o lu ; ( r )

f - t  1 0.4 I  t -11
t iQ): l t  o o]r ; ( i )

i : 0 ( i < 1 0 0 , " 1  : 0 , 1 , . . .

For this plant, MATLAB indicates' that the

eigenvalues of Gp+Gf, t ie bewveen 0.4054

and 2.7353 and hence Gp is a positive matrix'

The desired output trajectory is chosen as follows:

ya( i ) :0 .1 ls in( r f f )  0< i  <100(36)

Gp +Gfl is
exists a real

Ye(i) (40)

-a

It is clear from the assumption that

positive definite, is resulted there

number p2 such that:

"'Q)(cn 
+G$)e{) > pzrr {1"(i)

from (39) and (40) we get (36).
I

0 l0 :4, ll0 l0 l')O O0 -'o 8ll !n ltn
' f i m l ' l i )

Figure l: Desired output trajectory ya(i)

I no rde r tose lec tava lue fo r  \ p , \ 7  and  \p  f r om

performance index (7), the selection
\p : \ l : \ l  :0.01 is chosen to Provide
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numerical solutions of the evaluations of
hp( i  + l ) ,hr( j  *  1)  and hD( j  + 1)  at  very smal l

error values. The results are shown in Figs. 2 - 3.

The results confirm the theoretical prediction that

l le("r)l l  ana kp(j),k1(il,kp(j) converge to zero

as ./ + oo and that the convergence of the error

norm is monotonic. This is due to Theorems I and
2, which state that the positivity of the plant is a
sufficient condition for monotonic convergence to
zeto.

$

g 
-i 

1,, re t.l
rr ia 'al  i [dertJl

Figure 2: Norrn of error in log l0 l togtr l le("r)l l  )

. 0 5 .  
' k n ( i - t )

. t :  ,

z  I  I  a  i o  
- r s  

t t  t o  i s  z o
tr icd iMhx{J)

Figure 3: Value of palameters kp(j  +I),h(j  *1) and

hD( i  +r)

6 Conclus ions

In this paper, parameter optimization based
iterative learning control was introduced as a new
paradigm to solve the ILC problem when the
original plant is a discrete-time LTI system. The
resulting algorithm is PID rype and has guaranteed

monotonic convergence to zero if the original
system satisfies a positivity condition. Because of
its computational simplicify, this new ILC
algorithm is potentially straightforward to
implement in real-time applications. The weighting
parameters in the chosen performance index
influence convergence rates in a natural manner
and intuit ively add a degree of robustness to the
methodology.
The effectiveness of the proposed PID rype ILC is
il lustrated by simulation results. However,
formulating and solving the problem when the
underlying repetit ive system is nonlinear merit
further researches.
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