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Abstract: systen identifrcation is one the most
intportant parts in science and technology. This
branch of science specially has an important role
in control engineering; because only with a proper
identification method can one nodel a
phenonenon to control its perfornance. On the
other hand, singular systetns have been the subject
of interest over the last two decades due to their
many practical applications. But it has to be said
that systent identification of such system is still a
challenging area because of the difltculty of
identification of such systems for their conplex
structures. In addition, if seems that by developing
a useful metltod for singular system identificatian,
one can use the usefitl property of such systetns in
describing the natural complex phenomena. This
paper introduces a new quasi-static identification
method for LTI singular sysfenls as a powerfill tool
to identify this kind of systems. Resu,hs clearly
denonstrate the advantages ofthis new ntethod in
system identification of LTI singular sysfenls.

Keywords: LTI singular systens, improper
systems, system identification, strictly proper
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1 Introduction

Identification aims at finding a mathematical
model frorn the measurement record of inputs and
outputs of a system. A state space model is a most
obvious choice for a mathematical representation
because of its widespread use in system theoly and
contlol. On the other hand, continuous and

discrete-time linear control of the respective fonns
E  x ( t )  =  Ax ( t )  +  B  u ( t )  and

Ex(k+ l )=,a(k)+Brr(k)  wherex R", r r  R '

all coefficient matrices are constant and E is
singular, have attracted the attention of many
authors [, 2]. These systems are also known as
descriptor, semi-state, generalized state-space,
algeblaic-differential, implicit and degenerate
systems arise naturally as a l inear apploximation of
system models or l inear system models in rnany
applications such as electrical networks, aircraft
dynamics, neutral delay systems, chemical, thermal
and diffusion processes, large-scale systems,
interconnected systems, systems of partial
differential equations 13, 41, economics t5],
opti mization probl erns, feedbac k systelns, robotics,
biology, etc The literatule on singular systems is
exterrsive and we refer the readers to [6,7,8, 9 and
l0]. Previously not very much work has been done
on the identif ication of singular systems, especially
not in the l ineal case. Sorne works on the nonlinear
case are [ ] ,  12,  and l3] .
Here we propose a new algorithm for the
identif ication of l inear singular systems by
working with some derivative of input/output data
directly. The uti l i ty of this method is that the
identif ication algorithm is not applied on tlre
singular system directly but on its eqr-rivalents sub-
systerns by decomposing the singular systems to
tlvo sub-systems: a strictly proper system and a
polynomial one which models the non-causality
characteristics of the singular systems.

The remaining of this paper is structured as
follows. Section 2 briefly introduced singular
genelalized state space systems and presents
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propefties in cornpare of ordinary systems. Section
3 is devoted to describe the learning methodology
which is used to approximate the parameters of the
linear time invariant (LTI) singular systems in
frequency domain. Section 4 is devoted to show
the performance of the proposed identification
algorithm in system identification of the LTI
singular systems in compare of other methods via
some case studies. The last section contains the
concluding remarks.

2 Singular systems

A singLrlar irnplicit differential equation is an
implicit ordinary differential equation which takes
the form of

F ( i ( r ) , x ( f ) , u ( r ) , f )=0 ,  i ( f o )=xo  ( l )

where x is an n-dimensional state vector, u is an
ln dimensional control vector, f is time and the

Jacobian matrix i: is singular [4]. A systema*
which is described by singular implicit differential
equation is called as a singular system [7]. SingLrlar
systems are often referred to zrs differential
algebraic equations because they frequently are a
mixture ofdifferential and algebraic equations, that
is, they take the fonn of

i ( t )  =  f  ( x ,u , r )

0  =  s ( x ,u , r )  
Q )

Looking to this equation, one can define a matrix
-E such that

In this paper, the time-invariant system of r first
order coupled linear differential equations is
considered:

Where x is an r'-vector of internal variables, u is an
lFvector of control inputs or forcing function and y
is a p-vector of outputs.
When E is singular in (4), resulting in what we
shalf term a generalired state-space System or
singular system, this behavior is considerably
modified. In contrast to regular state-space system
(E is non-singular) we find the following.

i. The number of degrees of fi'eedom of the
system, i.e., the number of independent values that
E(0-) can take, is now evidently reduced to

f S r a n k E < r  ( 5 )

We propose the term generalizgd order for f.

ii. The transfer function C(s) may no longer be
strictly proper, in which case it may be written as

the sum of a strictly proper parl G(s) and a

polynomial part D(s).

i i i . For this case of sinsular E. !

degree of lsE -Al 2 n < f' < r (6)

The free response of the system in this case
exhibits exponential motions, as regular systems, at
the n finite frequencies s =,1 (possibly non-
distinct) where (sE *A) is singular. ln addition,

ho."vever, it contains f n inpulsive (i...,
distributional) motions, or "infinite-frequency"
modes (corresponding essentially to
(sE - A) losing rank a1 5 = 

"o ) [6].

3 System identification LTI singular
system via a quasi-static algorithm

Considering a l inear singular systenr such as

E* ( f )=Ax ( f )+Bu( f )

y (t) = cx(t) 
Q)

The output and input under zero init ial conditions
(i.e., Ex(0.):0) are related by the transfel function
G(s), as follows:

G ( s ) :  C ( s E - A ) t B  ( 8 )

It is found that the transfer function 6(s) may no
longer be strictly proper, in which case it may be

E* ( t )  =  F  ( x ,u , r ) ,

[ r  o l
r  _ l

L  - l

L0 0,1

- ,  ,  [ r ( x ,u , r ) -1r  l x , u , r  l = l  ;  i ,
[9 ( 'v' u' r,1-1

(3 )

E*( t )  =  Ax( f  )+  Bu( t )

Y ( t ) = C x ( t ) ,  t > 0

(4a)

(4b)
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written as the sum of a strictly proper part G(s)

and a polynomial part p (r) Therefore, we have:

2. Estimate an ARX ntodelA(q)lk) =

{q)r (kr  + y lk)  f rom the data {q(r ) , f  ( t  ) }  uy

c ( ' ) =c ( s )+o (s )

where

c(s )=c(s r  -A) '8 ,

and

(e) e^ , , .  = (x '  x ) - ' -Y '  y

3. Calculate the prediction eror of this
model

"* ,  (k)  = A(q)  y  ( r ) -  6(q)u ( t )

( 1 1 )

ARX

(l  2)
strictly proper

( l0a)

D ( s ) = C ( i  - ' E ) - '

--e (r + sE +.

B

. .+s " r ' ) i i ,  po l ynomia l

(10b)

A ,  E ,  e  ,  E ,  aand  Ea re  came f rom a
restricted standard equivalence of the system (8).

Here v is less than the size of E , since E is
nilpotent (i.e. has all eigenvalu"r = q) [6]. Fig. I
shows a l inear singular system which is decoupled
to a strictly proper subsystem and a polynomial
paft (in discrete domain).

Fig l: A decoupled singular system.

It is obvious that the polynomial subsystem in
discrete domain will be a moving average
subsystem. Fortunately, each sub system could be
identified by classical identification methods.
Therefole, one can adjust the parameters of a
singular system by decoupling it in to two
subsystems, and then adjust these parameters
simultaneously. The quasi-static algorithm to
identify parameters of linear singular system is as
follows:
l. To identify the pararneters of the strictly
proper subsystem, consider the output of the
polynomial part (which is not identified yet) as a
measurement noise to the strictly proper paft.

wtrose A(O) and B(q)  are deterrn ined by
a

H

4. To identify the parameters of the polynomial
paft, consider the output ofthe strictly proper part
(which is identified in this iteration) as a
measurement noise to the polynomial paft.
5. Estimate the d; parameters of the followins
FIR model bv least squares

" , " *  
( k )=  o (e )u ( t ) (  13)

This algorithm can be iterated until the
convergence is reached. Fig. 2 shows this quasi-
static algorithm.

This rnethod yields the l inear descriptor systems
in frequency domain. ln addition, it has to be said
that to get to the state space form of the singular
system one can use the Silverman-Ho algorithm
which gets the state space model of the singular
system via its transfer function [10, I5]

4 Simulation results

ln this section, in order to show the performance
of the quasi-static rnethod in identifying l inear
singular systems two case studies are considered.
In the first one, the quasi-static algorithm is
implemented to model a proper l inear descriptor
system and its results are compared with the
pelformance of oldinary Least Square Method. ln
the second case study, it is tried to model an
improper singular systems via quasi-static rnethod.

4.1.  Case study I
Consider a l inear singular system as:

[ r  r l  [ - r  r - l  [ - r l
I  X = l  X + l  L t

L0 0 l  L0 - r l  L2)
v  = [ 1  2 ] x

J

94

(  l 4 )



15th
Proceedings

(  16 )

(b)

F'ig 2: Singular system identification by decoupling
method: (a) approximating the parameters of the strictly
proper subsystem, (b) approximating the parameters of
the polynomial part after identifoing the strictly proper

subsvstem.

The regular pencil for this system after a linear
transformation is:

It is obvious that discrete system is unstable for
T > I . We use ?:0.9 and consider Gaussian white
noise for input signal and white noise as a
measurement noise. 300 input/output data is used
for tuning the coefficients of the model via quasi-
static algorithrn. Table I shorvs the performance of
the quasi-static method in comparison with
ordinary least square method in approximating the
parameters of this Iinear singular system:

Table l. Performirnce of the quasi-static method in
estin-rating the parameters ofproper singular system in

h the ordirrary least methodwl

4r Dr 0 Dg RMSE
Real

Parameters
0 . 1 2 2.7

LSE Method 0 588 0.026 -0.03 ,0. 178
Quasi-static

Method
0 095 2 027 2.583 0.007

Fig. 3 shows the perlormance of the model which
is obtained by ordinary least square algorithm in
comparison with the singular system's output. It is
obvious that the performance of tlre LSE method is
poor in approximating the parameters of this
singular system.

Fig 3: upper: pertbrmance of the LSE method in
modeling a proper lineir singular system; lorver:

nrodelinc cruor

Fig. 4 shows the perforrnance of the model which
is obtained by quasi-static method in comparison
with the singular system's output. lt is obvious that

(a)

ol
r l

( l s )

It can be seen that the nilpotent part ofthe system
has an index equal to zero, therefore, the degree of
polynomial part of the transfer function is a zero
order pol;,nomial. The transfer function for this
system is:
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the performance of this method is much better in
approximating the parameters of this singular
system in comparison with the performance of the
ordinary least square algorithm.

The discrete form of this transfer function by
Euler approximation is:

7 , Tf -4 12T2 -2lT +4
- - - Z - r  ^  Z t  -

T,2 T2 T2

1+(67 -2)z't +(sr' -er +r)z-'

w(er -z)z' +(sr' -ar +t)z'

loT4 -14T3 +l[r? -JT +1 -
;  Z -

T"
u(er -z)z-' +(sr' -er +t)z'

(1  8 )

This system is stable if 0<T<0.34. We use F0.3
and like formel case study we consider Gaussian
white noise for input signal and white noise as a
measurement noise. Table 2 shows the
perforrnance of the quasi-static method compare to
the ordinary least square method in approximating
the parameters of this linear singular system:

Table 2. Performalrce of the quasi-static method in
estimating tlre paltrnreters of proper singr"rlar system in

comparison rvith the ordinary least sqr"iare method

Fig. 6 shows the performance of the rnodel which
is obtained by quasi-static method in comparison
with the singular system's output. It is obvious that
the performance of this method is much bettel in
approxirnating the parameters of this singular'
systeln in comparison with the performance of the
ordinary least square algorithnr.

Gr(z)=rortu rctud ouau d6a@a{.n

Fig 4: upper: performance of the quasi-static method
in modeling a proper linear singular system; lower:

rnodeling crror

Fig. 5 shows the convergence rate ofmean square
error for models based on these tlvo methods. It is
obvious that the ordinary least square method
could not get to the proper model. On the other
hand, the performance of the quasi-static nrethod
according to the convergence of the mean square
error to zero is much better.

F= -SE Msrhod Conrcrgence

lecomposilion Method Corerqencs

i
I

I
I
!
I
1

l'-"-** r+t+-x,+-o 
i+p-e_1

il-+-]F+ --+i--.-+--:-- :" ! il

3U) 40m 50m 5000 7008
number oftraining data

Fig. 5: The convergence ofthe nrean square error of
ordinary least square nrethod and the quasi-static
method by increasing the number of training d*a.

025

s  0 1 5

:  0 1

4.2. Case study 2
Consider transfer function of a

system with index two as:

"  3 s  + 5
C ( s ) = l + s + s - *  ,s ' + 6 s  + 5

singular

(  l 7 )

Real
Pararneters

LSE
Method

Quasi-
static

Method
aO 0.2 -0.00r 0 .1  825
A1 0.35 -0.004 0.3209
PO l l 1t 11.2'l il l l
p - 2 t . l l t8.76 -20.78
Dr 8.66't 8.'t7 8.47
b 5 .755 0.83 7 5.46
B , -3.52 -0. I 504 -3.27

RIVISE 0 . 1 3 5 0 .0124
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Fig 6: upper: performance ofthe quasi-static method
in modeling a proper linear singular system; lolver:

modelins error

5 Conclusions
In this paper, the problem of system

identification of linear time invariant singular
systems is considered. It has to be said that the
literature on identification of singular systern is
not as rich as the literature on optimization or
Kalman filtering of singr"rlar systems. To do so,
this paper proposes a new learning metliod as a
quasi static algorithm to tune the parameters of
the transfer fiurction of singular system. The
great performance of this quasi static algorithm
in tr.rning parameters of linear singular systems
in comparison with an important algorithm in
system identification which is called oldinary
least square algorithrn depicts its potential in
this subject.
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