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Abstract: system identification is one the most
important parts in science and technology. This
branch of science specially has an important role
in control engineering; because only with a proper
identification method can one model a
phenomenon to control its performance. On the
other hand, singular systems have been the subject
of interest over the last two decades due to their
many practical applications. But it has to be said
that system identification of such system is still a
challenging area because of the difficulty of
identification of such systems for their complex
structures. In addition, it seems that by developing
a useful method for singular system identification,
one can use the useful property of such systems in
describing the natural complex phenomena. This
paper introduces a new quasi-static identification
method for LTI singular systems as a powerful tool
to identify this kind of systems. Results clearly
demonstrate the advantages of this new method in
system identification of LTI singular systems.
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1 Introduction

Identification aims at finding a mathematical
model from the measurement record of inputs and
outputs of a system. A state space model is a most
obvious choice for a mathematical representation
because of its widespread use in system theory and
control. On the other hand, continuous and

discrete-time linear control of the respective forms
E x(t) = Ax(t) + B u(t) and
Ex(k+1)= Ax(k)+ Bu(k) wherex R",u R"
all coefficient matrices are constant and E is
singular, have attracted the attention of many
authors [1, 2]. These systems are also known as
descriptor, semi-state, generalized state-space,
algebraic-differential, implicit and degenerate
systems arise naturally as a linear approximation of

" system models or linear system models in many
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applications such as electrical networks, aircraft
dynamics, neutral delay systems, chemical, thermal
and diffusion processes, large-scale systems,
interconnected systems, systems of partial
differential equations [3, 4], economics [5],
optimization problems, feedback systems, robotics,
biology, etc. The literature on singular systems is
extensive and we refer the readers to [6, 7, 8, 9 and
10]. Previously not very much work has been done
on the identification of singular systems, especially
not in the linear case. Some works on the nonlinear
case are [1, 12, and 13].

Here we propose a new algorithm for the
identification of linear singular systems by
working with some derivative of input/output data
directly. The utility of this method is that the
identification algorithm is not applied on the
singular system directly but on its equivalents sub-
systems by decomposing the singular systems to
two sub-systems: a strictly proper system and a
polynomial one which models the non-causality
characteristics of the singular systems.

The remaining of this paper is structured as
follows. Section 2 briefly introduced singular or
generalized state space systems and presents its
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properties in compare of ordinary systems. Section
3 is devoted to describe the learning methodology
which is used to approximate the parameters of the
linear time invariant (LTI) singular systems in
frequency domain. Section 4 is devoted to show
the performance of the proposed identification
algorithm in system identification of the LTI
singular systems in compare of other methods via
some case studies. The last section contains the
concluding remarks.

2 Singular systems

A singular implicit differential equation is an
implicit ordinary differential equation which takes
the form of
F(2(0),x(O),u(),t)=0,  X(ty) =X, (1)

where x is an n-dimensional state vector, u is an
m dimensional control vector, t is time and the

Jacobian matrix g—F is singular [14]. A system
X

which is described by singular implicit differential
equation is called as a singular system [7]. Singular
systems are often referred to as differential
algebraic equations because they frequently are a
mixture of differential and algebraic equations, that
is, they take the form of

x(t)y=r (x,u,t)

0=g(x,u,t) @

Looking to this equation, one can define a matrix
E such that

Ex(t)=F (x,u,t),
1 0] R
E_{O o) (3)

F(x,u.t) :[f (x,u,tﬂ

g(x.u.t))

In this paper, the time-invariant system of r first
order coupled linear differential equations is

considered:
Ex(t) = Ax(t)+ Bu(t) (4a)
y () =Cx(t), t=0 (4b)

i

il

.

Where x is an r-vector of internal variables, u is an
mrvector of control inputs or forcing function and y
is a p-vector of outputs.

When E is singular in (4), resulting in what we
shall term a generalized state-space Ssystem or
singular system, this behavior 1s considerably
modified. In contrast to regular state-space system
(E is non-singular) we find the following.

The number of degrees of freedom of the
system, i.e., the number of independent values that
Ex(0.) can take, is now evidently reduced to

&)

fZrank E <r
We propose the term generalized order for £

The transfer function G(s) may no longer be
strictly proper, in which case it may be written as

the sum of a strictly proper part G(S) and a
polynomial part D(s).

For this case of singular E,

degree of [sE—Al2n<f <r (6)
The free response of the system in this case
exhibits exponential motions, as regular systems, at
the n finite frequencies s=21 (possibly non-
distinct) where (SE —A)is singular. In addition,

however, it contains F£n Iimpulsive (i.e,
distributional) motions, or "infinite-frequency”
modes (corresponding essentially to

(sE — A) losing rank at s =<0) [6].

3 System identification LTI singular
system via a quasi-static algorithm

Considering a linear singular system such as

Ex(t) = Ax(t) + Bu(t)

(7)
y(£)=Cx(t)

The output and input under zero initial conditions
(i.e., Ex(0.)=0) are related by the transfer function
G(s), as follows:

G(s)=C(sE-A)"'B (8)

It is found that the transfer function G(s) may no
longer be strictly proper, in which case it may be
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written as the sum of a strictly proper part G (s)

and a polynomial part D (s). Therefore, we have:
G(s):G_(s)+D(s) (9)
where

G—(s) = C_(SI - Z);' B, strictly proper

(10a)
and
D(s):é(l—sb:)'lé
=é(1+s}§ +---+s"§")l§, polynomial
(10b)

A, B, C, B, Cand E are came from a
restricted standard equivalence of the system (8).
Here v is less than the size of E, since E is
nilpotent (t.e. has all eigenvalues = 0) [6]. Fig. |
shows a linear singular system which is decoupled
to a strictly proper subsystem and a polynomial
part (in discrete domain).

|

——3  Ba)/Ag) i»—-——ytf.k)

u(k) A vk
e

i D{g) —y2{k)

Fig 1: A decoupled singular system.

It is obvious that the polynomial subsystem in
discrete domain will be a moving average
subsystem. Fortunately, each sub system could be
identified by classical identification methods.
Therefore, one can adjust the parameters of a
singular system by decoupling it in to two
subsystems, and then adjust these parameters
simultaneously. The quasi-static algorithm to
identify parameters of linear singular system is as
follows:

1. To identify the parameters of the strictly
proper subsystem, consider the output of the
polynomial part (which is not identified yet) as a
measurement noise to the strictly proper part.

2. Estimate an ARX model A(q)¥(k) =
B(qyu(k) + y(k) from the data {g(k),z(k)} by

O =(X'X) X'y an

3. Calculate the prediction error of this ARX
model .

e (K) = A(q) y (k)= B(a)u (k) (12)

whose A(q) and é(q) are determined by

9/\[{){ :
4. To identify the parameters of the polynomial
part, consider the output of the strictly proper part
(which is identified in this iteration) as a
measurement noise to the polynomial part.
5. Estimate the d; parameters of the following
FIR model by least squares

s (K) = D{g)u (K) )

This algorithm can be iterated until the
convergence is reached. Fig. 2 shows this quasi-
static algorithm.

This method yields the linear descriptor systems

" in frequency domain. In addition, it has to be said

that to get to the state space form of the singular
system one can use the Silverman-Ho algorithm
which gets the state space model of the singular
system via its transfer function [10, 15].

4 Simulation results

In this section, in order to show the performance
of the quasi-static method in identifying linear
singular systems two case studies are considered.
In the first one, the quasi-static algorithm is
implemented to model a proper linear descriptor
system and its results are compared with the
performance of ordinary Least Square Method. In
the second case study, it is tried to mode! an
improper singular systems via quasi-static method.

4.1. Case study 1
Consider a linear singular system as:

111, [-1 1] {—ﬂ
{0 OJX—[O STRMETR (14)

y={1 2]x
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25+ 3

[§8)

G(s)=

+
s+ 5+1

T
T—I)

(16)

L% ]

G, (z)=2+—
i

|

K . . . .
1Rt It is obvious that discrete system is unstable for

T >1. We use 7=0.9 and consider Gaussian white
noise for input signal and white noise as a
measurement noise. 300 input/output data is used
for tuning the coefficients of the model via quasi-
static algorithm. Table 1 shows the performance of
the quasi-static method in comparison with
ordinary least square method in approximating the
RN parameters of this linear singutar system:

B{qVAlq)

h 4

—®  BYq)

Table 1. Performance of the quasi-static method in
estimating the parameters of proper singular system in
comparison with the ordinary least square method
a | Py by RMSE

()

u(k) eARX(K)
D) ( Real

o1 | 2 57 —
Parameters |
LSE Method 0.588 | 0.026 -0.03 0.178

Quasi-static
Method 0.095 | 2.027 | 2.583 0.007

v
v

o Fig. 3 shows the performance of the model which
—» Do) je— is obtained by ordinary least square algorithm in
" comparison with the singular system’s output. It is

obvious that the performance of the LSE method is
(b) poor in approximating the parameters of this
singular system.

Fig 2: Singular system identification by decoupling
method: (a) approximating the parameters of the strictly e o g g 1 g e
proper subsystem, (b) approximating the parameters of 9 (N N ' i sl |
the polynomial part after identifying the strictly proper i G-, i 1 b

subsystem.

The regular pencil for this system after a linear
transformation is: b : e

1 H [

it bt s ke il el S e

(sE~A)=[S(’;] (1)} (15)

It can be seen that the nilpotent part of the system
has an index equal to zero; therefore, the degree of
polynomial part of the transfer function is a zero
order p.olynomial. The transfer function for this Fig 3: upper: performance of the LSE method in
system is: modeling a proper linear singular system; lower:

modeling error

Fig. 4 shows the performance of the model which
is obtained by quasi-static method in comparison
with the singular system’s output. It is obvious that
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the performance of this method is much better in
approximating the parameters of this singular
system in comparison with the performance of the
ordinary least square algorithm.

sulput ol an improper modet ccording a lhe actual outpul of the Swrgidar systam
T

= b e |
o il snit |

Fig 4: upper: performance of the quasi-static method
in modeling a proper linear singular system; lower:
modeling error

Fig. 5 shows the convergence rate of mean square
error for models based on these two methods. It is
obvious that the ordinary least square method
could not get to the proper model. On the other
hand, the performance of the quasi-static method
according to the convergence of the mean square
error to zero is much better.

T

025 T 7 T T T T I
" : % ~—+-— LSE Method Convergence
-~ Decompesition Methad Convergence

Rool Mean Square Errer

|

et
Q ] 1
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number of training data

s L L

Fig. 5: The convergence of the mean square error of
ordinary least square method and the quasi-static
method by increasing the number of training data.

4.2, Case study 2
Consider transfer function of a linear singular
system with index two as:

3s+5

G(s)=l+s+s*+———
5°+6s+5

a17)

The discrete form of this transfer function by
Euler approximation is:

1 . Tr-4  12T* 21T +4
-—TZZ + TZ Z+ Tz
Gr(2)

Z)=
14(6T ~2) 2" +(ST* 6T +1) 22

1473 —247* +2|T—42_=

+ A
1+(6T~2) 27 +(ST* = 6T +1) 27

10T* 14T +12T = 7T +1 =
TZ
14(67=2) 2 +(ST* ~6T +1) 27

<+

(18)

This system is stable if 0<7<0.34. We use T=0.3
and like former case study we consider Gaussian
white noise for input signal and white noise as a
measurement noise. Table 2 shows the
performance of the quasi-static method compare to
the ordinary least square method in approximating
the parameters of this linear singular system:

Table 2. Performance of the quasi-static method in
estimating the parameters of proper singular system in
comparison with the ordinary least square method

Real LSE (S’t‘:t‘f;

Parameters Method Method

a 0.2 -0.001 0.1825

a 0.35 -0.004 0.3209
Do 11.11 11.27 11.11
P 2111 -18.76 -20.78
P2 8.667 8.77 8.47
by, 5.755 0.837 5.46
B, -3.52 -0.1504 -3.27

RMSE | = --—-- I 0.135 0.0124

Fig. 6 shows the performance of the model which
is obtained by quasi-static method in comparison
with the singular system’s output. It is obvious that
the performance of this method is much better in
approximating the parameters of this singular
system in comparison with the performance of the
ordinary least square algorithm.
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Fig 6: upper: performance of the quasi-static method
in modeling a proper linear singular system; lower:
modeling error

5 Conclusions

In this paper, the problem of system
identification of linear time invariant singular
systems is considered. It has to be said that the
literature on identification of singular system is
not as rich as the literature on optimization or
Kalman filtering of singular systems. To do so,
this paper proposes a new learning method as a
quasi static algorithm to tune the parameters of
the transfer function of singular system. The
great performance of this quasi static algorithm
in tuning parameters of linear singular systems
in comparison with an important algorithm in
system identification which is called ordinary
least square algorithm depicts its potential in
this subject.
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