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Abstract: In this paper, both stability and
stabilization  of a class of linear time-varying
systems with multiple time delays are considered. A
new controller using state feedback for stabilizing of
this class of systems is designed. A numerical
example is provided to verify the results established.

Keywords: Stabilization, linear time-delay
system.
1. Introduction

The important attention has been devoted to the
stability and stabilization of time-invariant linear
and nonlinear time delay systems as reported by[1].
Some research has been conducted towards the
stability and stabilization of linear time-varying
system with time delay in the state[1-3]; but in those
papers, the states delayed dynamic which may have
unbounded parameters were considered. In this
paper, we consider the system output as well as the
system states to have the unbounded parameters.
Obviously this case is not a trivial case of the work
which was done in[1-3].Thus the output would be of
the form y(z) = C(£)x(¢) ,whichC(t) is considered to
be unbounded, which implies that the system may
be unstable, even if all the system’s states are stable.
This paper investigates both stability and
stabilization independent of the delays of a class of
linear time-varying delay systems. A new controller,
since the unbounded outputs are considered using
state feedback for stabilizing of such a class of
systems is designed.. In section 2, the stability and
stabilization of the plant under a point delay is
considered. In section 3, the method is

extended to cover the multi-delay systems.

Eventually, a numerical example is provided in
order to verify the theoretical results.

2. Plant model under a point delay

Consider the following linear time-varying system:
()= A, ()x(t) + A, () x(t — h) + B(t)u(r) (I-a)
y(0)=C)x(0) (1-b)
x()=p() —h<<20

where x(f)eR" is the state,u(r)eR" is the
control input, »(yeR” Is the
output. 4, (1), 4, (1), B(t),C(t) are  continuous
matrices in the interval [0,o0)with appropriate
dimensions. C(t) is considered to be differentiable.
The initial value g(¢) is continuous function in the

interval [—4,0] .

2-1.  Stability

Consider the system:

x(t) = A,(@)x(t) + 4 ()x(t — h)
y(1) = C()x(1)
x(t)=o9(t),~h<t<0

where x(r)eR" is the state, y(r)eR" is the
output. 4, (2), 4, (1), C(r)
with appropriate dimensions. C(¢) is considered to
be differentiable. The
continuous function in the interval [-A,0] .
Theorem 1: System(2) is stable if there are positive
definite symmetric matrices P, (7),0,.,(f) and
(?) such that one of the

(2~a)
(2-0)

are continuous matrices

initial value () s

positive definite matrix K

nxn

following two conditions holds:
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Condition]

P(t) + 4, ! OPH+POA, )+ POA A4 r OPH+
C" HAOCH+CT OAOCE)+ 4, (OCT OANCE)+
CTOAOCEH+CT OAOC) 4, (1) +

cr (HOOC(H) A1) A4, T '(r)C r OOOCH+2I+K(6)=0

Condition2 :

P+ 4] (OPE) +

P(t) A, (8) + CT(HO(C () +
4 (OCTHQMOCE) +
CTHQOCE) +

CT (OO +

CT (OO A1) +21

PO)A () +

CHHONCH)4(D) I

AP+
4T OowCE)

-2/

|

Remark 2.1: Finite Difference method can be used
to solve the conditionl numerically as well as it can
be seen in [4].

Proof:Consider the following Lyapunov-Krasovskii
candidate functional:

V) =x" OPOx@)+y" 0ROy ©)+2 [|x(@)fdr

Taking the derivative of}'(¢) along the trajectory
(2) and using y =Cx +Cx ,we get
x=x(t),P=P),0=0(),y = y),C =C(t)

V= (on + Ax(t - h))T Px+x"Px+ xTP(A0x+ A x(t - h))+

(Cx+Clayx+ Azt =) QCx+x"CTOCx +

' CTO(Cx +C(Ayx+ Ax(t = )+ 2] = 2fxie - )
V=x"4,Px+x"(t -4 Px+ x" Px+
x" PAyx + x" PAx(t - h) +x"CTOCx +
x" 4, CTQCx+x" (1 —h)4,” C"QCx +
x'CTQCx +x"CTQCx + x"CTQCAx +
XCTQCAx -y + 2o’ - 2xe - BT @)

Lemma:For any vectors v,,v,€R" and any

34

positive definite matrix M € R™" the following

inequality holds[5]:

2wy, <v My, +v,) M7y,

Using the lemma, the equation(3) becomes

V() <x" ((P@)+ A4, (O)P() + P(O) 4, (t) +

P A, ()4, (OP@) +CT (QNC @) +

CT(HOOCH) + 4, (HCT HOWC(2)
+CT(HQWNC () + CT(HQC(1) A () +
CT(HONOC@NA (A (CT (N (@) +2D)x(t)

If the conditionl holds, we would have

V< —x"(H)K({)x() <0

which implies that the system(2) is asymptotically

stable.

The equality (3) can be rewritten in the following
form:

4, P+ P+
P(1) 4, (1) + CT ()Q()C (1) +

A, (OCT (HREC®) P(t)A, () +
_ +CT(HONOCH)+ CT(HOWOCHA ()
VO=F"0) ¢ (o 20

+CT(ODCE)Y A, (1) +21

A" ()P + -2/
4" (OCT (HRC() ]
x(t) »
where F(f)= . If the condition2 holds,
x(t-h)

we would have V(£) < 0,which implies system(2)
is asymptotically stable.

Corollary 1: Consider the following linear time-
invariant system with time delay:
x(t)y = A, x(t)+ A x(t = h)

y(1) = Cx(2)
xB)y=p(),-h<t<0

The system(4) is stable if there are positive definite
PO, . and a positive

such that one of the following

(4-a)
(4-b)

symmetric matrices

definite matrix K

n

two conditions holds:
Condition 1 .

AP+ P, + PAAT P+ 4 C'OC +C"QCA, +
CTOCAACTQC+21+K =0
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Condition 2:
AT P4 PA+4TCTOC
i T -
[+CTOCA, +21 A, +CTOCA
<0
ATPraTcToC -2/

2-2. Stabilization
Theorem2:Consider the system

x(t) = Ay (£)x(t) + i A@O)x(t—h )+ Btu) (5)

) =p@t), h<t<0

h=max{h},h >0 ,1<i<L

where x(t) e R",u(t) e R", 4,(1),i =0,,2,....,m , B(t)
are the matrix functions of the delayed dynamic of
appropriate dimensions, the initial vector @(¢) is a
continuous function given in the interval [-/4,0]. A

is the time delay.
Assume that the matrix functions

A (t),i=12,...m are differentiable in
t € R" .Assume that

rank[M,(t,), M, (t,),... M, (t,), ] =n

where

My (0)=[B(1), 4,4 () ers 4, 0]
A, (=" 4,0

M, (6) =4, , (M, () + %M 0,

k=l,..,n=1, 4, ,()=A4,t)+al
Then the system(5) is « — stabilizable[2].
The following assumption is made on system(1):
Assumptionl: System(1) is stabilizable.
Theorem3:The system(1) with condition (A1) and
the controller
u(t)==~(B")P@©)+BT ()T ()2 €)X ¢))x ()
is stable if there are positive definite symmetric

matrices P, (£),0,..(¢) and a positive definite
matrix K, () such that one of the following two

conditions holds:

(Condition1'y:

P(t)+ A, () P(6)+ P(£) A, (8) + P(1) A, () A, () P(t)
=2P()B(t)B (t)P(t)-2P(t) B(1)B" (1)CT (1)Q(1)C(r)

=2CT ()QE)C()B(t)BT (1)P(6)+ CT (HO()C (1) +
CTOONCH+ 4, (OCT (OO +CT(RMC )

=2CT (HOMC@)B()B" (NCT (NQHC(1)

+CT(OONC) A4, (1) + CT (HONCH A, (D4, (H)CT (HADC()
+2/+K()=0

(Condition?2):

4 OP@)-2P()BW) B ()P()
=2CT (HQOCNB()B" (1) P(1)

+ Pty + P(1) 4,(1)

—2P() BB (1)CT (H0()C (1) P4 () +
+CT(HOWCH) + 4, (OCTHOWCE)  CTORWCWHAD
-2CT (HOOCOBWB (CT (HQWC () k <0

+CT(OOOC@)+CT HRNC ()
+CT(OOOCU) A1) +21

= ~2f
A (PO +

i AT (OCT(HOC[@) )
Proof:Consider  the  following  Lyapunov-
Krasovskii candidate functional:

Viy=x"OPxt)+y" OOy @)+2 J’{|x () dr

t—h

Taking the derivative of V(f) along the trajectory
(1) and using y =Cx +Cx ,we get
x=x(t),P = P(),0=0(),y = y(t),C=C(1)
V= (on + Ax(t —h)+ Bu) Px+x" Px+
e P(on + A x(t—h)+ Bu) +
(Cx+ C(dyx + 4,x(t - h) + Bu)) OCx +
x'CTOCx + xTCTQ(Cx + C(on + A x(t-h)+ Bu))
+ 2 - 2 -

Using u = —(BTP + B"'C"'QC)x ,we get

35
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V =(dyx + 4,x(t = By = BB P+ B"CTQC)x)l Px+x" Px+

" P(A,x+ Ax(e— ) - B(B" P+ B'CTQC )+

(Cx+ Clayx+ A xe— )~ B(B" P+ BCTQC )Y QCx
+xTCTOCx +x"CTO(Cx + C(Agx + Ax(t — h) —

B(B"P+ B"CTQC)x)) + 2|’ - 2fx(¢ - )" =

V=x"d Px+x"(t-h)A" Px-x"PBB" Px—x"C"QCBB" Px +
x" Px+ x" PAyx + x” PAx(t— h)~ x" PBB” Px

~x"PBBTCTOCx +x"CTOCx + x" 4,7 CTQCx +

x"(t=h)47C"QCx - x" PBB"CTQCx -
x'CTQCBB'C"QCx+x"C' QCx + x"CTQCx +
x'CTQCAx+ x'CTQCAx(t - h)— x"C"OBB" Px
~x"CTOBB'CTOCx + 2| - 2|x(t - m)’ (6)
Using the lemma, the equality (6) becomes
V<x"(P(t)+ 4, ()P(t)+P(t)A4,(t)+

P(0)A, () A, () P(t)-2P(1) B()BT (1) P()
=2P(H)B(1)B" ()CT (HQWC()
=2CTOO@CH)B)BT (H)P(t)+

CTMHONCH)+CT (HOWC() +

4" (OCT (HRMC()+CT ()

=2CT(HQWCH BB (NCT (HQ(HC (1)
+CT(OHOWC(H) A, (1) +
CT(OOCHA,(0)4, (OCT OQOCH+2Dx  (7)
If the condition1” holds, the equality(7) turns to be
V< -x"(OK@®x() <0

This  implies  system(1)  with  controller
u= —(BT P+B'C’QC )x is asymptotically stable.
The equality (6) <can be rewritten as
follows:

V) =

[ 47 0P~ 2P@)BU)BT (1)P()

-2CT (HEWICBO BT (HP(E)

+ P+ P4, (1)

=2PBO B (HCT (HROHC(E) P4+
+CTOANOCE+ 4T OCTHRNCE)  CTHOANCOA4W)
2Ty ~2CTOQOCHBO BT (NCT (NQ(C() 20
+CTONCE) +CT(OANC)
+CT(OQUICU) A, (t) + 21

4 OP0)+ s

AT(OCTOHOOCH

where z ()= x({t) . If the condition2” holds,
x(t—h)

again we end up with V(l) < 0,which implies that

system(1) with controller

u(ty=-(B" (OP@)+B" )T ()Q)C1))x (¢

would be asymptotically stable.

Corollary 2: Consider the following linear time-
varying time delay system:

x(ty = A, ()x(t) + A4, (£)x(t — h) + B(t)u(t) 8)
x(ty=@(),~h<t=<0

The system(8) with the controller u(¢)=—B" (t)P(¢)

is stable if there are positive definite symmetric
matrix P(f)and a positive definite matrix K(¢)

such that one of the two following conditions holds:
Condition 1:

P(1)+ A, () P(1) + P(t) A, (t) + P() A, () 4" (OP(E) -
2P()B(OB" ()P(t)+ 21+ K(1) =0
Condition 2 : :

P(t)+ 4, ()P() + P(£)A4,(t)

—2P(t)B()B" (t)P(t) + 21 POA) | o

A" ()P 2T
Corollary 3: Consider the following linear time-
invariant system with time delay:

x(t) = Ayx(t) + 4,x(t — k) + Bu(t) 9-a)
y(1) = Cx(2) 9-b)
x(t)=¢(t) ,~h<t<0

The system(9) with the controller

u(t)=—(B"P+B"C"QC)x(t) is stable if there are
positive definite symmetric matrices p 0 anda

= mxm

positive definite matrix K, such that one of the

two following conditions holds:
Condition 1:

A" P+ PA, + PA A" P+ A C"QC-2PBB"P
-2PBB'C'QC -C"QCBB' P-2C"QCBB"C"QC
~CTQCBB"P+C"QCA, +CTOCA A ' CTQC+2[+ K =0

36
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Condition 2 -

[4," P+ P4, +4,"C"QC~2PBB" P |
-Cc"QCBB"C"P-2PBB"CTQC -
2CTQCBB'CTQC-CTQBB" P P4, +

T
+CTOC4, +21 CTOCA o5
AP+
. -2/
L A'cTQcC J

SF Extension to multi-delay system

Now we will extend the case to multi-delay system.
Consider the following linear time-varying system:

()= A (t)x(H)+ i A(Ox = h)+ B()u(t) (10-a)
i=t

y(1) = C(O)x(?) (10-5)

) =p(t), h<t<0

h=max{h},h>0 1<i<L

where x(t) € R",u(t) e R", y(r) e R".

Ay (0), 4,(8), B@),C(t),i =1,..., L are  continuous

matrices with appropriate dimensions. c() 1is

differentiable over the interval [0,c0). A is the
constant delay of the system. The initial value @(¢)
is continuous function in the interval [-A,0]. L is

the number of the delays.

The following assumption is made for system(10):
Assumption2: The system(10) is stabilizable.
3-1.  Stability

Consider the system:

L
(1) = Ay ()x(1)+ ) A, ()x(t—h,) (11-a)
i=t
y(0) =CO)x(0) (11-2)
x=p@t), h<1<0
h=max{h},h >0 ,1<i<L
where x(#) e R",u(f) e R", y(t) e R".
Ay (D), 4,(), B1),C(W),i=1,..,L ~ are  continuous
matrices with appropriate dimensions. C(r) is

differentiable over the interval [0,0). h is the

37

constant delay of the system. The initial value ¢(f)
is continuous function in the interval {-A,0]. L is

the number of the delays.
Theorem 3: The system(11) is stable if there are
positive definite symmetric matrices

P..®),0,..()and positive definite
matrix R___(¢) such that one of the following two

nxn

a
conditions holds:
(Conditionl")

P(6)+ 4, (1) P(t) + P(£) A, () + i P(OA, (D47 (P
+CT(OEOCH+CT (HQWBOCH+ 4, (OCT QT
+CT(HOMC() +CT (DT A, (1) +

icT OONCH)A ()4, (DCT (HOMC(E)+2LI + R(t) =0

i=1

(Condition2"):

x &, &, % ]
a' -2 0 0

a, 0 =21 0 |<0
o, 0 0 -21
where

7= A, (O)P(@) + P(t) + P(£) A, () +

CT(HOMC[E) + 4, (HCT (HQNOC()
+CT(HONC(H) +CT (HANCE) +
CT()OW)C () A, (t) + 2 LI

a, = P41+ CT(HOMCHA, @) , 1<i<L

Proof:Consider the following Lyapunov-Krasovskii
candidate functional:

I !
V() = x" OPOX0)+y (D000 +2Y. () dr
=l —p,
Taking it’s derivation along the trajectory (11) and
using y =Cx +Cx ,we get
i L - . o
V=x"4, Px+ Zx’ (t—h )4, Px+ x" Px+

i=l

L
x"PAyx+ Y x" PAx(t—h)+x"CTOCx +

i=}

I‘ P
x"4,7CTQCx+ > x" (1 - h) A4, CTOCx

i=1
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+x"CTQCx +x"CTQCx + x"CTQCA,x +
L

x"CTOCAx(t - )+ 2L -2 [xt - h)|°  (12)
i=1

Using the lemma, we have
Vi) sx" (0P + 4, (1)P(t) + P(1) 4, (F)

+3 P4, (04T ()P + CT (OO +

CTORWNCEH) + 4, (NCT(QOC(1) +
CTORMC(1) + CT(QNC() Ay (1) +

Z CTNQNCNA ()4 (CT (QNC () +2LI)x(t)

i=1

If condition 1" holds, we have

V< -x"()K@®)x(t) <0

That implies system(11) is asymptotically stable in
finite time.

The equality (12) can be rewritten in the following
form:

X a, a, &,
e -21 0 0
viy=0"(t) a,” 0 21 0 |o@®)
a0 0 -21I|

where

x =4, (OP@)+ P(t) + P() A, (1) +

CT(NQE)C() + 4, (CT (HQWOC (1)
+CT(OOC@H)+CT (HRNC () +
CT(OOWCH) A, (1) +2LI

a, = POA () +CT(HONOCWHA () , 1<i<L

. x(t)
o) = I:x(t - h)}

If the condition2” holds, we have V¥ (¢) < 0,which

implies that the system(11) is asymptotically stable.
Corollary 4: Consider the following linear time-
invariant system with multi-point delays:

J

)= A+ Ax(t—h)
¥(1) = Cx()
()=o) ,~h <t<0

h =max{h},h >0,i=1,..L
The system(13) is stable if there are positive definite

(13-a)

(13-b)

‘matrices P (1),0

symmetric matrices P, ,0, .and a positive

definite matrix R such that one of the following

nxn
two conditions holds:
Condition 1:

3 L v -
A P+ P4, +Y PAATP+4,CTOC+

i=1
C"QCA, +C"QCA, A" C"QC + 2L + R=0
Condition 2:

e e - o
a =21 0 - 0

a,’ 0 -2/ 0 |<0
lee,” 0 0 - =21
where

x=AP+PA, + A4, CTOC+C"OCA, +2LI
a,=P4, +C"OC4,

3-2. Stabilization [

Theorem4:The system(10) with condition (A2) and
the controller ()= -(B" ()P()+B” ()CT QX ))x ()
is stable if there are positive definite symmetric
(t)and a positive definite

nxn mxm

matrix R () such that one of the following two

conditions holds:
(Condition 1™ :

P()+ 4, (P + P(H) 4, (6) + Z P4, (DA O)P@E)

—2P(H)B(t)BT (t)P(t) - 2P(1)B(t) B" (1)HCT (1))Q(1)C(¢)
-2CT (HQOCH) BB ()P@)+CT(HQMNC () +
CT(HOWOCE) + 4, ()CT OQNC(H) +CT (HOMNC @)
-2CT (HQ(HCW)B()BT (H)CT (HQ(HC()
+CT(OHOMOCEHA, () +

3 CTQOCEH A4 B4 ()CT (HOOC(H)

+2LI+R() =0

38
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(Condition 2™ : V={Ax+ 430 -h) - BB P+ B CTOCK) Prx+
7 «a a - a T o P x Pdox + Ax(e - By - B(B" P+ B'CTQCk)+
1
o’ -2 0 0 (Cx+ Clagx+ Axe -y - B(B" P+ B'C"QC )} 0Cx
% # X7 CTOCx + 7 CQCx + Cldyr + Ax(t - B - BB P+ B'CTQC))
@ 0 =21 - 0 |<0 ) -
: . . ) 2o -2 - =
, x A Px+ x"(t - k) A" Px— x" PBB" Px -
| & 0 0 R 2]_ K CTOCBB Px +x" Px+ " PAyx + X" CTQCx +
where X" A4TCTOCx+ 5T (1 - BYA CTQCx - X" PBBTCT QCx -

X CTQCBB'C'QCx + X' CTQCx + X' CTQCx + X CTQCAx +

X =4 (O)P() = 2P(1)BE)BT (1) P(1) e e
X PAx(t - hy— X PBB"Px— x" PBBTCTOCx +

—2CT (HPMCHBOB" () P() XCTOCAX(t - k)~ " C'QBB" Px— x"C" QBB C"QCx +
+P() + P(t) 4, (1) 2 - 2xte - ) (14)
=2P()B(H)B" (1)CT (HQWC() ‘ Using the lemma, the equality (14) is

+CT 0T + 4,7 (CT OODC() V()< x" ()P + A, (0)P(t)+ P(1) A, (1) +

=2CT (HRMOCH) BB (NCT (HQ(C (1) Z P()A, ()4, () P(H) = 2P(1)B(1)B” (1)P(1) ~
OO +CT MO 2P()B() BT (CT (HOCW+CT (D)

+CT(OOWOCE) A, (t) + 2LI
a, = POA@O)+CTOOOCHA() , 1<isL

CT(H0WC) + 4, (OCT G \
Note that this theorem is a generalized form of the (tz,Q(t) 0+ 4, mr (t)?(t) ®
results in [2]. =207 OQNC(HBMHB (HCT (HANC (1)

Proof:Consider the following Lyapunov-Krasovskii +CT(NONC() A4, (1) +

functional candidate: Lo I
2. CTH0NCEH 4, ()4 (nCT (HO(NC([@)

V(ey=x" (O)P@O)x(1)+y (I)Q(t)y(t)”;,_ﬂ'x(r)" e " et 0 )

Taking it’s derivation along trajectory (10) and If'the condition]” holds, equality(15) is
V < —x"(t)R(t)x(¢) < 0, ,which implies that the

—2C" (NQM)C () BB (1) P(1)+CT (NQNC()+

N

using ¥ =Cx +Cx ,we have

L T system(10) with controller
V:(AOX+ZA'x(t—hi)+Buj Px+xTPx+ u(t) — _(BI(I)P(l‘)+BI([)CI(t)Q(f)C(t))X(f) would

IZI be asymptotically stable in finite time.
x7 p( Agx+ Y Ax(t—h)+ Bu] + The equality (14) can be rewritten as foﬁllows:

- r z a, a, g
(Cx+C(A0x+iA,x(t—h,)+BuD QCx+x"CTQOCx + [a{r -2 0 - 0 .

S "W, 0 =20 - 0 |8)
xTC"'Q(Cx + c[on £Y Ax-h)+ BuD ‘ : : T
e, 0 0 - -21]

L
+2Lef - 23 - )f
i=l

Using u = —(BTP + BTCTQC)x ,we get
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where

2 =4, OPF)-2P(1)B(t)B" (1)P()
-2CT(HO(OCOB()B” (1) P(1)

+ P+ P(1)A, (1)

—2P(B(t)B" (1)C” (HQ()C()
+CT(HOMCE) + 4, ()CT(HQE)C()
-2CT(HOMNCEHBE) B (CT (HQNC(r)
+CTOONCE) +CT(HQNC ()
+CTOQWC(1) A, (1) + 2 LI

a, = P(t)A,(t) + CT ()Q()C(£) A4,(¢)
0@t) = [x(0), x(t = 1), x(t = )]

If the condition2” holds, we have V() < 0 ,which
implies that the system(10) with controller
u(t)=-(B" ()P(©)+ BT ()T (OQOC ©))x () s
asymptotically stable.

Corollary 5: Consider the following linear time-
varying system with multi point delays:

©(t) = A, (O)x(t) + Z[: A Ox(t—h)+ BOu)  (16)

, 1<i<L

x(D=p(t) ~h <1<0

h=max{h},h >0,i=1,..,L

The system(16) with controller u(f) =—B" (£)P(t) is
stable if there are positive definite symmetric
matrices P (1),0,,.,(t) and a positive definite

nxmn mxm

(f) such that one of the following two

conditions holds:
Condition 1:

matrix R

nxn

PO+ A4 OPO+ PO 40+ S, POADAT OPEO)

i=t
-2P)B{)B" (t)P(t)+2LI + R(t) =0
Condition 2 :

[x & a = a]
a' -2 0 = 0
a, 0 =21 - 0 [<0
& 0 0 s=» -2]

where
7= PO+ 4, (OP@) + P(0)4,(0) -

2P()B()B" (1)P(t) + 2LI
a, =Pt)A,(t) , 1<i<L
It is clear that these results are the same as [2]. It
shows that the results of [2] are a special case of our
results.

Corollary 6: Consider the following linear time-
invariant system with multiple delays:

18
X(6) = Agx(t) + ) A;x(t = h)+ Bu(r) (17-a)
(1) =Cx(¢) (17-b)
x() = () ,~h <t<0
h=max{h},h >0,i=1,..,L
The system(17) with controller

u(ty =—(B" P+ B"C"QC)x(¢) is stable if there are
positive definite symmetric matrices P,,,0,,,,, and
a positive definite matrix R, such that,one of the

following two conditions holds:
Condition 1 :

A, P+ PA, +PAA P+ 4, CTQC-2PBB" P

. —2PBB'CTQC -C"QCBB" P

40

-2CTQCBB"C"QC -C"QCBB" P+ C' QCA,
L A -
+>C'0C4,4"CTOC+2LI+R=0
i=l

Condition 2 :

roow o oo

a -2 0 - 0

) 0 =21 - 0 |<0
@) 0 0 o =21
where

y=4,P+P4,+ A4, C"QC-2PBB" P

-C"QCBB"C"P -2PBB'C'QC -

2CTOCBBTCTQC -C"QBB'P +C"QCA, +2LI
o, = P4, +CTQCA4,
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4. Numerical example

Consider the system:

o fe* 0 (e 0 (20
x(t)—(o l]x(t)+ko e’”)x(t 2)+(0 _l]u(t)

y(r)=[e0 ?]x(t)

x@)=[2,2  for -2<t<0
It can be verified easily that both states and outputs
of the system are unstable.

We choose the following matrices that satisfy the
conditiont of theorem 2 which implies the
asymptotically stabilization of the system:

1«

—e¥ 0 e™ 0
P = =
@) 40 ] ,0) [ g 2+e"]

time

Fig.1 the outputs of the system

slakas

time

Fig.2 the states of the system

We have simulated this system with the controller
we designed and the results are illustrated by Fig.1

and 2. These figures show that the both states and
outputs of the system are stable.

5. Conclusions

In this paper, we considered both stability and
stabilization problems of a class of linear time-
varying systems with time delay. We designed a
new controller for the stabilization of this class of
systems. It can be verified that the considered
system may be unstable if the system’s states whole
are stable. A numerical example was provided in
order to show the results established.
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