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Abstract:  FFT and iFFT are ones of the most useful 
blocks in DSP systems. Since the speed of calculation of 
the result is one of the important factors of this basic 
block, in this paper we develop a new method for 
FFT/iFFT implementation which leads to better 
computation speed in comparison with other common 
implementation methods. 
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1 INTRODUCTION 
 
High performance fast Fourier transform (FFT) are 
widely used in different areas of applications such 
as communications, radars, imaging, etc. One of 
the major concerns for researchers is the 
enhancement of processing speed. However 
according to use of portable systems working with 
limited power supplies, low-power techniques are 
of great interest in implementation of this block. 
FFT and iFFT blocks are used in OFDM links such 
as Terrestrial Digital Video Broadcasting (DVB-T) 
systems, Digital Audio Broadcasting (DAB) 
systems and microwave portable links. 
Of course there are many ways to measure the 
complexity and efficiency of an algorithm, and the 
final assessment depends on both the available 
technology and the intended application. Normally 
the number of arithmetic multiplications and 
additions are used as a measure of computational 
complexity.  
Several methods of for computing FFT (and iFFT) 
are discussed in [1]. These are basic algorithms for 
implementation of FFT and iFFT blocks. A 
memory-based power-efficient FFT processor is 
also proposed in [2]. The proposed scheme is 
based on the minimization of the coefficient access 

and reduction of switching activity by modifying 
the butterfly sequence. A reconfigurable FFT 
processor architecture is proposed in [3]. Another 
structure using novel order-based processing 
scheme is proposed in [4]. 
In this paper we will introduce a high-speed 
memory-based implementation method for 2K and 
8K FFT and iFFT (used in DVB-T systems) 
exploiting a common structure which is able to be 
configured with different number of butterflies 
according to speed-area trade off. This core is 
developed using VHDL language. 
The following of this paper is as follows: in section 
2 we will discuss the theory of the implementation 
method. Section 3 will explain the implementation 
algorithm and synthesis results and comparison 
will be declared in section 4 and Conclusions will 
be followed in section 5. 
 
2  THEORY 
 
Design of this core is based on a famous SFG 
shown in Fig.1. This SFG is achieved by 
decimation in frequency (DIF) algorithm and its 
main specification is sequential and simple method 
for addressing. Fig. 1 illustrates this SFG for 16 
points FFT as an example. The structure would be 
the same for any other number of FFT points. In 
this figure the coefficients of the arrow lines are -1 
and for the other simple lines the coefficients are 1. 
In other situations the coefficients are shown on 
corresponding lines of SFG. 
If we use this SFG for implementation of FFT, the 
WN-coefficients equal to N
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the coefficients will equal to N
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addition for iFFT a division by N should be done at 
the end but since StagesofNoN .2= , it is possible to 
divide the result of each stage by 2 instead of 
dividing the main result by N. 
 

Fig 1. The SFG used for implementation 
 

As illustrated in figure 1, according to regular 
structure of the SFG the hardware used for 
implementation of one stage can be used for 
implementation of other stages as well. In this 
SFG, applying the points with indices k and k+N/2 
to a butterfly as inputs will result two points with 
indices 2k and 2k+1 in the output. N is the total 
number of FFT points and N/2 k  0 <≤ . 
 
3  IMPLEMENTATION 
 
Since the intended application for this core is being 
used in base-band section of a DVB-T modulator 
the FFT and iFFT blocks are designed for two 
2048 (2K) and 8192 (8K) points and because the 
second one needs more hardware for 
implementation, it is assumed as a base of our 
design. Since the implementation of FFT and iFFT 
are very similar, only the implementation of iFFT 
core will be explained. 
For an iFFT core with 8192 points, the first stage 
of the mentioned SFG is shown as in Fig. 2. Note 
that because of similarity between the stages of the 
SFG, it is possible to do the whole calculations by 
repeating the first stages for 13 times. 
In this structure only coefficient from 0
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In this equation the Sin values are all positive for 
any value of k, but values of Cosinus are positive 
for 40 Nk <≤  and negative for 24 NkN <≤ . 

For this reason Fig. 2 is divided into 2 parts that in 
the above part both Sin and Cos coefficients are 
positive and in the below one the Sin coefficients 
are positive but Cos coefficients are negative 
(except for last stage).  
Therefore in the calculations the sign of Sinus and 
Cosinus coefficients is always considered positive 
and instead the kind of operation is chosen 
according to the signs. For example if the sign is 
negative the operation will be changed to 
subtraction from addition. 
Four dual port ROM (DPROM) modules have 
been used for saving the values of Sin and Cos. In 
these ROMs only the Sin values for the first 
quarter of triangular circle are stored. Total number 
of these values for 8192 points iFFT is 2048. One 
out of four of these values is used for iFFT with 
2048 points. 
Since the ROM blocks are dual port, eight Sin 
values are accessible at the same time, which 
makes working of 8 butterflies possible 
simultaneously.  
Assuming 16 bit data width, the saved values in 
ROMs are calculated from )2sin( Nkπ ×٢16. With 
this assumption when 40 Nkandk ==  the Sin 
or Cos coefficient equals to one, and consequently 
17 bits are needed for storage of this coefficients. 
In order to efficient usage of ROM in these two 
situations, instead of saving the value of 1×216, 
auxiliary circuit for detection of these special 
situation and generation of 1×216 is used. Thus 
ROM blocks have 16-bit data width but multipliers 
have 17-bit input ports. 
 

 
Fig. 2. The First Stage of the implemented SFG 



 

 
Fig. 3. Structure of the used butterflies 

 
Since Flat implementation of this SFG consumes 
significant hardware, divide Figure 2 is divided 
into 8 part and two points from each part are 
accessible simultaneously. So in each step 8 
butterflies are needed instead of 4096 butterfly in 
flat implementation but on the other hand each step 
will take 512 clock cycles. The structure of these 
butterflies is illustrated in figure 3. 
32 DPRAM blocks and 4 DPROM blocks are used 
for implementation of iFFT core. 16 DPRAM 
blocks are used for storing real part and the other 
16 blocks are used parallel for saving of imaginary 
part of data. All of DPROM blocks are used for 
storing the coefficients. 
Each group of 16 DPRAM blocks which are used 
for real or imaginary part of data are divided into 
two groups and each group can save 8192 symbols. 
In the first step one of these groups acts as the 
source and the other one acts as destination and in 
the next step their position will be reversed. This 
will continue up to the last stage. Figure 4 shows 
the arrangement of DPRAM blocks. 
Since these RAM blocks are dual port, there is an 
opportunity to access to two points in one moment. 
Therefore for calculation of iFFT with 8192 points 
each RAM is divided into two parts, the first 512 
symbols are stored in the first part and the last 512 
in the second part. Port A is used to access to the 
upper part and the lower part is accessible via port 
B.  
 

 
Fig. 4. Arrangement of DPRAM blocks 

 
In each step data from (k+1024×(i-1))th and 
(k+1024×(i-1)+N/2)th rows through port A and 
data from (k+512+1024×(i-1))th and 
(k+512+1024×(i-1)+N/2)th rows through port B 
are read from the source RAM and fed into two 
butterflies and the results will be written in 

(2k+2048×(i-1)), (2k+2048×(i-1)+1), 
(2k+1024+2048×(i-1)), (2k+1025+2048×(i-1)) th 
rows of the destination RAMs where ‘i' is the 
RAM index, N is number of iFFT points and k is 
the index of proper cell. It is important to note that 
only ¼ of the capacity of  the DPRAM blocks is 
used for implementation of iFFT with 2048 points. 
Since 8 DPRAM blocks are used in this 
architecture in parallel way, 16 points are 
accessible in each clock. So in each step two 
blocks of source RAMs contribute to generate the 
data for two blocks of destination RAMs. Table 1 
indicates the access pattern to RAM blocks. 
 
Table 1. RAM access sequence in even and odd stages 

Source Destination 

RAM1_1_A, RAM1_5_A RAM2_1_A, RAM2_1_B 

RAM1_1_B, RAM1_5_B RAM2_2_A, RAM2_2_B 

RAM1_2_A, RAM1_6_A RAM2_3_A, RAM2_3_B 

RAM1_2_B, RAM1_6_B RAM2_4_A, RAM2_4_B 

RAM1_3_A, RAM1_7_A RAM2_5_A, RAM2_5_B 

RAM1_3_B, RAM1_7_B RAM2_6_A, RAM2_6_B 

RAM1_4_A, RAM1_8_A RAM2_7_A, RAM2_7_B 

RAM1_4_B, RAM1_8_B RAM2_8_A, RAM2_8_B 

RAM access sequence in odd stages 
 

Source Destination 

RAM2_1_A, RAM2_5_A RAM1_1_A, RAM1_1_B 

RAM2_1_B, RAM2_5_B RAM1_2_A, RAM1_2_B 

RAM2_2_A, RAM2_6_A RAM1_3_A, RAM1_3_B 

RAM2_2_B, RAM2_6_B RAM1_4_A, RAM1_4_B 

RAM2_3_A, RAM2_7_A RAM1_5_A, RAM1_5_B 

RAM2_3_B, RAM2_7_B RAM1_6_A, RAM1_6_B 

RAM2_4_A, RAM2_8_A RAM1_7_A, RAM1_7_B 

RAM2_4_B, RAM2_8_B RAM1_8_A, RAM1_8_B 

RAM access sequence in even stages 
 
As mentioned above for calculation of iFFT with 
8192 points there are 512 groups with 16 members 
that operation for each group takes one clock. So 
for calculation of 13 stages, total operation takes 
512×13 clock cycles. This will take 128×11 clock 
cycles to calculate an FFT of iFFT with 2048 
points. 
According to speed-area trade-off, addition of 
more butterflies to the hardware will result in less 
clock cycles and consequently smaller calculation 



time as well as more needed hardware specially 
multipliers. 
 
4  SYNTHESIS RESULTS 
 
Employing the parametric nature of this core, the 
iFFT block is implemented on one of Xilinx’s 
Virtex-II Pro™ FPGAs with different 
configurations. The main difference between these 
configurations is in the number of their parallel 
butterflies. Table 2 indicates the number of used 
FPGA slices, number of used internal 18×18 
multipliers and required number of clock cycles. 
 

Table 2. Synthesis results 
Number of  

Clock Cycles 
Number of  

18×18 
Multipliers 

Number of  
Slices 

Number of 
 Butterflies  

128×11 8 443 2 
64×11 16 768 4 
32×11 32 1430 8 
16×11 64 2612 16 

2048  
Point 
 iFFT 

512×13 8 504 2 
256×13 16 835 4 
128×13 32 1489 8 
64×13 64  16 

8192  
Point  
iFFT 

 
 
The maximum allowed clock frequency of the core 
is about 60 MHz. This means that this core can 
calculate more than 320,000 iFFT operations with 
2048 points in one second. 
The same algorithm also simulated in Matlab 
where the input data for this simulation was 
generated randomly and written in two .dat files. 
One of these files contains the real part of data and 
another one is used to store imaginary part of data. 
Therefore we can easily compare the intermediate 
data that are calculated in Matlab with the signal 
values in FPGA implemented design and compare 
the result in two ways. Also with the use of Matlab 
iFFT function we can get sure about the final 
result. 
Figure 5 shows the trade off between area and 
operating speed of iFFT/FFT core for both 2048 
and 8192 points. 
 
5  CONCLUSION 
 
A parametric design for iFFT/FFT blocks for 
implementation on FPGA introduced and synthesis 
results reported. Since the design was intended to 
be implemented on a FPGA from Xilinx’s Vertex- 
II Pro™ family, the used blocks were designed 
according to the specification of this family of 
FPGA. On the other side because of the need for 
high data rates, the main goal was to increase the 

operating frequency and less attention was paid to 
reduction of consumed area. 

 
Fig. 5.  Number  of FPGA Slices vs. Number of needed 

clock cycles 
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