
High-Speed Parametric FPGA Implementation of
FFT/iFFT Blocks for OFDM Transceivers

Abstract: FFT and iFFT are ones of the most useful
blocks in DSP systems. Since the speed of calculation of
the result is one of the important factors of this basic
block, in this paper we develop a new method for
FFT/iFFT implementation which leads to better
computation speed in comparison with other common
implementation methods.

Keywords: FFT, iFFT, implement, FPGA.

1 INTRODUCTION

High performance fast Fourier transform (FFT) are
widely used in different areas of applications such
as communications, radars, imaging, etc. One of
the major concerns for researchers is the
enhancement of processing speed. However
according to use of portable systems working with
limited power supplies, low-power techniques are
of great interest in implementation of this block.
FFT and iFFT blocks are used in OFDM links such
as Terrestrial Digital Video Broadcasting (DVB-T)
systems, Digital Audio Broadcasting (DAB)
systems and microwave portable links.
Of course there are many ways to measure the
complexity and efficiency of an algorithm, and the
final assessment depends on both the available
technology and the intended application. Normally
the number of arithmetic multiplications and
additions are used as a measure of computational
complexity.
Several methods of for computing FFT (and iFFT)
are discussed in [1]. These are basic algorithms for
implementation of FFT and iFFT blocks. A
memory-based power-efficient FFT processor is
also proposed in [2]. The proposed scheme is
based on the minimization of the coefficient access

and reduction of switching activity by modifying
the butterfly sequence. A reconfigurable FFT
processor architecture is proposed in [3]. Another
structure using novel order-based processing
scheme is proposed in [4].
In this paper we will introduce a high-speed
memory-based implementation method for 2K and
8K FFT and iFFT (used in DVB-T systems)
exploiting a common structure which is able to be
configured with different number of butterflies
according to speed-area trade off. This core is
developed using VHDL language.
The following of this paper is as follows: in section
2 we will discuss the theory of the implementation
method. Section 3 will explain the implementation
algorithm and synthesis results and comparison
will be declared in section 4 and Conclusions will
be followed in section 5.

2 THEORY

Design of this core is based on a famous SFG
shown in Fig.1. This SFG is achieved by
decimation in frequency (DIF) algorithm and its
main specification is sequential and simple method
for addressing. Fig. 1 illustrates this SFG for 16
points FFT as an example. The structure would be
the same for any other number of FFT points. In
this figure the coefficients of the arrow lines are -1
and for the other simple lines the coefficients are 1.
In other situations the coefficients are shown on
corresponding lines of SFG.
If we use this SFG for implementation of FFT, the
WN-coefficients equal to N

j

N eW
π2

−
= . Note that the

difference between FFT and iFFT is that for iFFT

Behzad Eghbalkhah
University of Tehran

B.Eghbalkhah@ece.ut.ac.ir

Zhila Amini Sheshdeh
University of Tarbiat Modares

Zh.Amini@gmail.com

Mehdi Ehsani-Nick
University of Tehran
Ehsani@gmail.com

the coefficients will equal to N
j

N eW
π2

= . In
addition for iFFT a division by N should be done at
the end but since StagesofNoN .2= , it is possible to
divide the result of each stage by 2 instead of
dividing the main result by N.

Fig 1. The SFG used for implementation

As illustrated in figure 1, according to regular
structure of the SFG the hardware used for
implementation of one stage can be used for
implementation of other stages as well. In this
SFG, applying the points with indices k and k+N/2
to a butterfly as inputs will result two points with
indices 2k and 2k+1 in the output. N is the total
number of FFT points and N/2 k 0 <≤ .

3 IMPLEMENTATION

Since the intended application for this core is being
used in base-band section of a DVB-T modulator
the FFT and iFFT blocks are designed for two
2048 (2K) and 8192 (8K) points and because the
second one needs more hardware for
implementation, it is assumed as a base of our
design. Since the implementation of FFT and iFFT
are very similar, only the implementation of iFFT
core will be explained.
For an iFFT core with 8192 points, the first stage
of the mentioned SFG is shown as in Fig. 2. Note
that because of similarity between the stages of the
SFG, it is possible to do the whole calculations by
repeating the first stages for 13 times.
In this structure only coefficient from 0

NW to 1
2

−
N

NW
are needed and it is also possible to write:

20)2sin()2cos(
2

NkNkjNkeW
k

N
jk

N <≤+== ππ
π

In this equation the Sin values are all positive for
any value of k, but values of Cosinus are positive
for 40 Nk <≤ and negative for 24 NkN <≤ .

For this reason Fig. 2 is divided into 2 parts that in
the above part both Sin and Cos coefficients are
positive and in the below one the Sin coefficients
are positive but Cos coefficients are negative
(except for last stage).
Therefore in the calculations the sign of Sinus and
Cosinus coefficients is always considered positive
and instead the kind of operation is chosen
according to the signs. For example if the sign is
negative the operation will be changed to
subtraction from addition.
Four dual port ROM (DPROM) modules have
been used for saving the values of Sin and Cos. In
these ROMs only the Sin values for the first
quarter of triangular circle are stored. Total number
of these values for 8192 points iFFT is 2048. One
out of four of these values is used for iFFT with
2048 points.
Since the ROM blocks are dual port, eight Sin
values are accessible at the same time, which
makes working of 8 butterflies possible
simultaneously.
Assuming 16 bit data width, the saved values in
ROMs are calculated from)2sin(Nkπ ×٢16. With
this assumption when 40 Nkandk == the Sin
or Cos coefficient equals to one, and consequently
17 bits are needed for storage of this coefficients.
In order to efficient usage of ROM in these two
situations, instead of saving the value of 1×216,
auxiliary circuit for detection of these special
situation and generation of 1×216 is used. Thus
ROM blocks have 16-bit data width but multipliers
have 17-bit input ports.

Fig. 2. The First Stage of the implemented SFG

Fig. 3. Structure of the used butterflies

Since Flat implementation of this SFG consumes
significant hardware, divide Figure 2 is divided
into 8 part and two points from each part are
accessible simultaneously. So in each step 8
butterflies are needed instead of 4096 butterfly in
flat implementation but on the other hand each step
will take 512 clock cycles. The structure of these
butterflies is illustrated in figure 3.
32 DPRAM blocks and 4 DPROM blocks are used
for implementation of iFFT core. 16 DPRAM
blocks are used for storing real part and the other
16 blocks are used parallel for saving of imaginary
part of data. All of DPROM blocks are used for
storing the coefficients.
Each group of 16 DPRAM blocks which are used
for real or imaginary part of data are divided into
two groups and each group can save 8192 symbols.
In the first step one of these groups acts as the
source and the other one acts as destination and in
the next step their position will be reversed. This
will continue up to the last stage. Figure 4 shows
the arrangement of DPRAM blocks.
Since these RAM blocks are dual port, there is an
opportunity to access to two points in one moment.
Therefore for calculation of iFFT with 8192 points
each RAM is divided into two parts, the first 512
symbols are stored in the first part and the last 512
in the second part. Port A is used to access to the
upper part and the lower part is accessible via port
B.

Fig. 4. Arrangement of DPRAM blocks

In each step data from (k+1024×(i-1))th and
(k+1024×(i-1)+N/2)th rows through port A and
data from (k+512+1024×(i-1))th and
(k+512+1024×(i-1)+N/2)th rows through port B
are read from the source RAM and fed into two
butterflies and the results will be written in

(2k+2048×(i-1)), (2k+2048×(i-1)+1),
(2k+1024+2048×(i-1)), (2k+1025+2048×(i-1)) th
rows of the destination RAMs where ‘i' is the
RAM index, N is number of iFFT points and k is
the index of proper cell. It is important to note that
only ¼ of the capacity of the DPRAM blocks is
used for implementation of iFFT with 2048 points.
Since 8 DPRAM blocks are used in this
architecture in parallel way, 16 points are
accessible in each clock. So in each step two
blocks of source RAMs contribute to generate the
data for two blocks of destination RAMs. Table 1
indicates the access pattern to RAM blocks.

Table 1. RAM access sequence in even and odd stages

Source Destination

RAM1_1_A, RAM1_5_A RAM2_1_A, RAM2_1_B

RAM1_1_B, RAM1_5_B RAM2_2_A, RAM2_2_B

RAM1_2_A, RAM1_6_A RAM2_3_A, RAM2_3_B

RAM1_2_B, RAM1_6_B RAM2_4_A, RAM2_4_B

RAM1_3_A, RAM1_7_A RAM2_5_A, RAM2_5_B

RAM1_3_B, RAM1_7_B RAM2_6_A, RAM2_6_B

RAM1_4_A, RAM1_8_A RAM2_7_A, RAM2_7_B

RAM1_4_B, RAM1_8_B RAM2_8_A, RAM2_8_B

RAM access sequence in odd stages

Source Destination

RAM2_1_A, RAM2_5_A RAM1_1_A, RAM1_1_B

RAM2_1_B, RAM2_5_B RAM1_2_A, RAM1_2_B

RAM2_2_A, RAM2_6_A RAM1_3_A, RAM1_3_B

RAM2_2_B, RAM2_6_B RAM1_4_A, RAM1_4_B

RAM2_3_A, RAM2_7_A RAM1_5_A, RAM1_5_B

RAM2_3_B, RAM2_7_B RAM1_6_A, RAM1_6_B

RAM2_4_A, RAM2_8_A RAM1_7_A, RAM1_7_B

RAM2_4_B, RAM2_8_B RAM1_8_A, RAM1_8_B

RAM access sequence in even stages

As mentioned above for calculation of iFFT with
8192 points there are 512 groups with 16 members
that operation for each group takes one clock. So
for calculation of 13 stages, total operation takes
512×13 clock cycles. This will take 128×11 clock
cycles to calculate an FFT of iFFT with 2048
points.
According to speed-area trade-off, addition of
more butterflies to the hardware will result in less
clock cycles and consequently smaller calculation

time as well as more needed hardware specially
multipliers.

4 SYNTHESIS RESULTS

Employing the parametric nature of this core, the
iFFT block is implemented on one of Xilinx’s
Virtex-II Pro™ FPGAs with different
configurations. The main difference between these
configurations is in the number of their parallel
butterflies. Table 2 indicates the number of used
FPGA slices, number of used internal 18×18
multipliers and required number of clock cycles.

Table 2. Synthesis results
Number of

Clock Cycles
Number of

18×18
Multipliers

Number of
Slices

Number of
 Butterflies

128×11 8 443 2
64×11 16 768 4
32×11 32 1430 8
16×11 64 2612 16

2048
Point
 iFFT

512×13 8 504 2
256×13 16 835 4
128×13 32 1489 8
64×13 64 16

8192
Point
iFFT

The maximum allowed clock frequency of the core
is about 60 MHz. This means that this core can
calculate more than 320,000 iFFT operations with
2048 points in one second.
The same algorithm also simulated in Matlab
where the input data for this simulation was
generated randomly and written in two .dat files.
One of these files contains the real part of data and
another one is used to store imaginary part of data.
Therefore we can easily compare the intermediate
data that are calculated in Matlab with the signal
values in FPGA implemented design and compare
the result in two ways. Also with the use of Matlab
iFFT function we can get sure about the final
result.
Figure 5 shows the trade off between area and
operating speed of iFFT/FFT core for both 2048
and 8192 points.

5 CONCLUSION

A parametric design for iFFT/FFT blocks for
implementation on FPGA introduced and synthesis
results reported. Since the design was intended to
be implemented on a FPGA from Xilinx’s Vertex-
II Pro™ family, the used blocks were designed
according to the specification of this family of
FPGA. On the other side because of the need for
high data rates, the main goal was to increase the

operating frequency and less attention was paid to
reduction of consumed area.

Fig. 5. Number of FPGA Slices vs. Number of needed

clock cycles

REFERENCES

[1] Alan V. Oppenheim, Ronald W. Schafer, John

R. Buck, Discrete-Time Signal Processing.
Prentice Hall, Second edition, pp. 646-652,
1999.

[2] Seungbeom Lee, Duk-bai Kim, Sin-Chong
Park, “Power-efficient design of memory-
based FFT processor with new addressing
scheme,” Communications and Information
Technology, 2004 (ISCIT 2004). IEEE
International Symposium on, Volume 2, 26-
29 Oct. 2004 Page(s):678 - 681.

[3] M. Hasan, T. Arslan, J. S. Thompson, “A delay
spread based low power reconfigurable FFT
processor architecture for wireless receiver,”
System-on-Chip, 2003. Proceedings.
International Symposium on, 19-21 Nov. 2003
Page(s):135 – 138.

[4] M. Hasan, T. Arslan, “Implementation of low-
power FFT processor cores using a novel
order-based processing scheme,” Circuits,
Devices and Systems, IEE Proceedings [see
also IEE Proceedings G- Circuits, Devices and
Systems], Volume 150, Issue 3, 6 June 2003
Page(s):149 – 154.

