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Information Theory Based Analysis and Design of Sorting Networks 
 
 

   
 
 

Abstract – In this paper the concepts of information theory are 
utilized to perform the performance analysis of the sorting 
networks which is selected as an example of the parallel 
architectures. It is shown that using this method, the source of the 
redundancy and the short comings of the performance can be 
monitored specifically and an analytical proving for efficiency of 
designs can be presented. Also it is expected that the optimum 
design can be obtained at first try in design stage instead of some 
try and error methods. It may have more contribution in the large 
size and complicated approximate working architectures. More 
accurate bounds for the performance characteristics can be 
determined using this method to anticipate the time to stop 
attempt to increase in the performance with definite condition. 
Some example is presented and future works are introduced.   

I.  INTRODUCTION 

Although information theory was primarily developed to 
deal with the fundamental questions in communication theory 
[1] [2], it has had a much broader impact. Information theoretic 
concepts have found widespread applications in some different 
areas such as statistics, optimization, and population studies. 
There had been a renewed interest in the application of these 
concepts to some important problems in the field of computer 
science in past two decade [3] [4], for example an entropy 
based method for minimization of Sum-of-Product (SOP) 
expressions of switching functions was presented at [5]. 
Recently some attempt to apply information theory concepts to 
evolutionary Boolean circuit synthesis is reported too [6] [7]. 

In a different point of view all computation and calculation 
results can be considered as a kind of information resource. For 
example in the sorting operation of a given number of inputs, 
the position of each number in the sorted list can be considered 
as a resource of information. Shannon has presented a way to 
understand the information at [1] [2], which is use of 
information entropy as a measure of the amount of information 
contained within a message [6]. So there is an idea to suppose 
each operation, as an experiment to receive this some part of 
total information of the operation. Whit this consideration, it is 
obvious that the efficient algorithm and so architecture is the 
one, in which, each operation obtains the most possible 
information. As entropy tells us that there is a limitation in the 
amount of information that can be removed from a random 
process without information loss [6], it is concluded that if in 
the cost of one processor the maximum amount of information 
can be obtained the efficiency is already maximized. The tight 
bounds for performance characteristics such as cost and delay 
could be derived from total amount of the information divided 
by the maximum amount of information can be obtained by 
each processor. And the total delay could be calculated as 
number of processors multiplied with the delay of each 
processor. In parallel architectures and array processors the 
conclusion is authentic if we use the maximum possible 
number of processors with the maximum amount of 
information recovery with each processor. On of the most 

important note in this consideration is monitoring the 
information and preventing from the unwanted redundancy 
which means recovery of some discovered information which 
is useless as is clear for us and cause in less efficiency. 
It is expected that the efficient algorithm and architecture can 
be derived from this method of observation in design steps, as 
we try to maximize the efficiency in each step. 

In this paper a sorting network are selected as an example 
of the parallel architecture. Some notation and the utilized 
concepts of the information theory are described briefly in the 
next section. The efficiency and performance for sorting 
network are described in part two of this report. The 
investigation of the performance and efficiency for some 
conventional sorting networks is coming in part three. The 
proposed network designed with information theory is coming 
in this section too and some comparison is done with the 
conventional networks. The application and future works are 
introduced in the fourth part and in the last part the conclusion 
and summary are coming.   

 

II.  NOTATION AND CONCEPTS 

A.   Sorting Network 
 A sorting network is a circuit that receives n inputs, x0, x1, 
x2… xn-1, and permutes them to produce n outputs, y0, y1, y2 …, 
yn-1, such that the outputs satisfy y0 ≤ y 1 ≤ y2 ≤ . . . yn–1. We 
often refer to such an n-input n-output sorting network as an n-
sorter [8]. An n-input comparator network, which is an acyclic 
circuit of comparators, is called a sorting network if it sorts all 
n! permutations of {0, 1, 2…, n-1} [9]. 
 
B.   2-Sorter 
 We can build an n-sorter out of 2-sorter building blocks. A 
2-sorter compares its two inputs and orders them at the output, 
putting the smaller value, before the larger value [8]. 
 
C.  The Zero–One Principle 
 An n -sorter is valid if it correctly sorts all 0/1 sequences 
of length n [8]. 
 
D.  Selection and Merging Network 
 A selection network is a comparator network that classifies 
the input values into two groups such that all values in the first 
group are smaller than all those in the other group. A merging 
network is a comparator network that merges two sorted lists 
[9]. 
 
E. Probabilistic Networks 
 Comparator networks that correctly sort, select, or merge 
almost all input permutations are called probabilistic networks 
because they output the correct result with high probability on 
a random input permutation [9]. 
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F. Network of Success Probability at least 1-ε 
 An n-input network N is called a sorting network of 
success probability at least 1-ε if it correctly sorts (1-ε )n! of n! 
permutations of input [9]. 

An n-input network N is called an (n, k)-selection network 
of success probability at least 1-ε if the output wires of N can 
be partitioned into two sets L and S such that on at least (1-ε)n! 
permutations, N outputs the k smallest input values on wires in 
S, and the n- k largest input values on wires in L [9]. 

An (m0, m1)-input network N is called an (m0, m1)-merging 
network of success probability at least 1-ε if N merges at least 
(1-ε)C(m0+ m1, m0) of the permutations under consideration [9]. 
  
G.  Cost and Delay 
 The cost defined as the total number of 2-sorter blocks 
used in the design and the delay means the number of 2-sorters 
on the critical path from input to output [8]. 
 
H.  The Entropy of an Information Source 
 Considering a discrete source of the finite state, in which 
for each possible state i there will be a set of probabilities pi(j) 
of producing of the various possible symbols j. Thus there is an 
entropy Hi for each state. The entropy of the source will be 
defined as the average of these Hi weighted in accordance with 
the probability of occurrence of the state in question: 

 ( ) ( )
,

logi i i i i
i i j

H PH P p j p j= = −∑ ∑  (1.1) 

H is also approximately the logarithm of the reciprocal 
probability of a typical long sequence divided by the number of 
symbols in the sequence [1]. 
  

III.  EFFICIENCY IN SORTING NETWORKS 

 The efficiency in parallel architectures is defined as [8]: 

 ( ) ( )1

( )

T
E p

pT p
=  (1.2) 

Where the E(p) is the efficiency of a p processor network, the 
T(1) is total operation time which takes for a single processor 
to do a task and the T(p) is the total time which takes for p 
processor to do the same task in parallel. We are always 
interested in efficiency from the equation above to become 
equal to 1, which means the total operation time with p parallel 
processor takes 1/p of time with a single processor. According 
to Amdahl’s law as always a small fraction of inherently 
sequential or unparallelizable computation severely limits the 
speed-up that can be achieved with p processors [8]; we may 
never reach such efficiency in practice. The sequential 
computation limitation may be overcame using pipeline-like 
use of the parallel architecture and feed the architecture with 
large sequence of task to execute. This limitation may become 
negligible when the number of execution grows increasingly.  

About the unparallelizable fraction, which some time is 
called redundancy, it seems clearer description is needed. We 
are going to investigate this fraction of unparallelizability 
through concepts of information theory to minimize this 

fraction, if there was any possibility, to obtain more efficiency 
and speedup. 
The redundancy in parallel architectures is described as below: 

 ( ) ( )
( )1

W p
R p

W
=  (1.3) 

Where the R(p) is redundancy the W(p) is total number of unit 
operations performed by the p processors; this is often referred 
to as computational work or energy, and the W(1) is the 
number of operation for one processor [8]. The ideal value for 
redundancy is 1 which means there won’t be any need to do 
more task when we use a parallel architecture instead of a 
single processor. As the utilization is equal to redundancy 
multiplied by efficiency [8], in constant value of utilization any 
decrease in redundancy may considered as an increase in 
efficiency. 

Suppose we have a sorting network whit the size of n.  As 
previously described the whit the given sequence of n object 
the sorted result would be one of the n! permutations of this set 
of object. Through the concepts of the information theory the 
total information of this source of sorting operation calculated 
as below: 

 ( ) ( ) 1
log log log !

!n nI S P S n
n

= − = − =  (1.4) 

 
Where the I(Sn) is the total information of sorted sequence of n 
input objects in bit unit and so the base of logarithm is 2. It 
suggests that, if we absolutely earn one bit information in each 
processing (comparison) the lower bound of cost can be 
considered at the same value of the total information, Log (n!) 
which is strictly less than n Log (n) so the cost for n-sorting 
network would be Ω(Log (n!)) which is more accurate lower 
bound than the classical size of Θ(n Log(n)) resulted from 
Ajtai, Komlos, and Szemeredi with O(n Log(n)) or Θ(n 
Log2(n)) resulted from Batcher with O(n Log2(n)) [8]. As the 
earned information of each comparison never exceeds 1, the 
above statement will remain truthful. Anyway the ideal sorting 
network should have 2-sorters, each of them deliver 1 bit 
information in each comparison. If we consider that we could 
do such comparison in each step, the minimum time required 
for sort a sequence of n object could be calculated trough 
2Log(n!)/n when in each step n/2 comparison can be performed 
and the so the maximum information in each step equal to n/2 
and the total delay can be calculated from total information 
divided by n/2. From the above statement the lower band of 
delay for such n-sorting network is 2Log(n!)/n. It means that 
the delay for such network is form Ω(Log(n!)/n) which is more 
accurate than the classical delay of Θ(Log(n)) resulted from 
Ajtai, Komlos, and Szemeredi with O(Log(n)), or Θ(Log2(n)) 
resulted from Batcher with O(Log2(n)) [8]. 

We should notice when we speak about earning 
information trough each comparison or experiment we mean 
the new information. The obvious fraction of each output has 
no information. So if we arrange the 2-sorters such as the result 
of comparison would be predictable the output may contain 
less than one bit information. Obviously in two cascaded 2-
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sorter the result of the second 2-sorter are fully predictable and 
so the output of the second stage contains no information. In 
another word the more the unpredictable output the more the 
information will earned. In a 2- sorter which has two output of 
sweep or not to sweep the information will be maximized and 
equal to one if inputs have identical chance to be greater than 
each other. It means the entropy maximizes if the probability of 
each output be equal to 0.5. It could be observable from 
equation below: 

 

(2) ( log (1 ) log(1 ))

1
(2) 1 1

2

H p p p p

H p p p

= − + − −

= ⇒ = − ⇒ =
 (1.5) 

Through the above statements, until there have been 
identical pair which have same chance to be greater than each 
other to compare we can walk on lower bound of size (cost) 
and delay (time). It is always practical in preliminary steps; 
unfortunately this condition will expire in further steps and 
sometime we forced to do a comparison which is somewhat 
predictable and so the information less than one bit is earned. It 
is the limitation, some time called inherently unparallelizem 
fraction of computation or redundancy in sorting network. In 
simpler word there would be a condition that there is no 
difference between using some processor in parallel or ignore 
some of them as they may earn a little or no information. There 
are some techniques to restrict the impact of this limitation but 
never eliminate it. Accordingly to reach the maximum 
efficiency it is sufficient to earn the higher information in each 
step considering the effect of comparisons in this step on the 
condition of next steps. If we follow this model the design will 
be optimum and cost and time efficient. The only requirement 
is calculate the entropy of each process correctly and try to 
maximize it. 
 

IV.  INVESTIGATING EFFICIENCY IN SORTING 
NETWORKS 

 One of the most famous sorting networks is Batcher Even-
odd sorting network. A schematic of an 8-sorter of the Batcher 
are coming in Fig. 1. The compressed form of the Batcher 
even-odd sorting network is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. An 8-input Batcher's even–odd merge sorting network. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. An 8-input Batcher's even–odd merge sorting 

network in compressed form. 
To investigating the efficiency of the sorting networks the 

model of Fig. 3 is utilized. The model shows the output status 
of each step according to previous comparison. The black 
block means that the status of this block is not clear in 
comparison with the (i,i) block yet. As the 2-sorters transfer the 
greater input to upper output the white block upper than block 
(i,i) means this block is obviously greater than the block (i,i) 
and the white block lower than block (i,i) means this block is 
obviously less than the block (i,i). In each comparison the 
earned information cause all or part of some blocks become 
clear. In the case of partly clearance the portion of clearance is 
written in the block. Suppose in one comparison object in row 
i, ai, compared to object in row j, aj, when i>j,  to now which 
block become clear the statements below should be considered:  

 
k i l

m j n

a a a

a a a

< <

< <
 (1.6) 

  

 

,

,

,

,

k m i l

i j
m j n l

k i n l

i j
k m j n

a a a a
a a

a a a a

a a a a
a a

a a a a

< <> ⇒  < <

< << ⇒  < <

 (1.7) 

If the probability of ai >aj equals to p and so the probability of 
ai <aj equals to 1-p the equations above simplifies as below: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

,

1 1 1 , 1

1 , 1 1 1

k m i l

i j
m j n l

k i n l

i j

k m j n

pa pa pa pa
a a

pa pa pa pa

p a p a p a p a
a a

p a p a p a p a

< <> ⇒  < <

− < − < − −< ⇒  − − < − < −
 (1.8) 

 
( ) ( )

( ) ( )
, 1 , 1

, 1 1 ,

k m i j l n

m k i j n l

a a G pa p a pa p a

pa p a L p a pa a a

< = + − < −


− < = − + <

 (1.9) 
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  0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
0 █   █ █ █ █ █ █ █       █ █ █ █ █               

1   █ █ █ █ █ █ █   █ █   █ █ █ █   █   ¾ █ █ █   

2 █ █ █   █ █ █ █   █ █   █ █ █ █     █ ¾ █ █ █   

3 █ █   █ █ █ █ █       █ █ █ █ █   ¾ ¾ █ █ █ █   

4 █ █ █ █ █   █ █ █ █ █ █ █         █ █ █ █ ¾ ¾   

5 █ █ █ █  █ █ █ █ █ █ █   █ █     █ █ █ ¾ █     

6 █ █ █ █ █ █ █   █ █ █ █   █ █     █ █ █ ¾   █   

7 █ █ █ █ █ █   █ █ █ █ █       █               █ 
 

Fig. 3. Utilized model of the sorting network. 
 

The equations above divide the two columns of i and j to four 
regions, upper than i, lower than i, upper than j and lower than 
j.  The equation (1.9) says that in the lower side of column i the 
clear blocks are the lower clear blocks of column i and the 
lower clear blocks of column j. In the upper side of the column 
j the clear blocks are the upper clear blocks of column i and the 
upper clear blocks of column j. In the upper side of the column 
i the clear blocks are the upper clear blocks of column i 
multiplied by p and the upper clear blocks of column j 
multiplied by 1-p. In the lower side of the column j the clear 
blocks are the lower clear blocks of column i multiplied by 1-p 
and the lower clear blocks of column j multiplied by p. The 
block i in the column j and the block j in the column i will  
become clear. After all columns become compared the total 
chart most has diagonal and antidiagonal symmetry so if there 
isn’t any symmetry we try to perform that and make some 
more block empty. 
 To investigate the 8-input Batcher even-odd sorting 
network consider the compressed form of the Fig. 2. The 
modeling of this 8-sorting network is coming in the Fig. 5. As 
previously described each stage is shown in a 8x8 table. For 
each of the 6 step the final form is presented. As the input n=8 
the total information is Log(8!)=15.3 bit as in each step total 
amount of 4 comparison is possible, ideally, the minimum 
delay is 15.3/4=4. It will observed that this ideal lower bound 
is newer reached as some unbalance conditions occur. We 
know from the entropy formula that the maximum amount of 
entropy occurs when the balanced data being compare in each 
2-sorter. With the balanced data we mean two inputs with the 
same probability of being greater than each other. In the first 
step four comparisons with the balanced condition is existed. 
So four bit information is earned. In the next steps there are  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. An 8-input Batcher's even–odd merge sorting network. 

TABLE I 
THE COMPARISON BETWEEN TWO SORTING 

NETWORKS 
Batcher Odd-Even 
Sorting Network 

Proposed Sorting 
Network Step 

Comp. Entropy of 
step  

Comp. Entropy of 
step  

0-1 1 0-1 1 
2-3 1 2-3 1 
4-5 1 4-5 1 

1 

6-7 1 

4 

6-7 1 

4 

0-2 1 0-2 1 
1-3 1 1-3 1 
4-6 1 4-6 1 

2 

5-7 1 

4 

5-7 1 

4 

0-4 1 0-4 1 
1-2 1 1-2 1 
3-7 1 3-7 1 

3 

5-6 1 

4 

5-6 1 

4 

1-5 1 1-4 1 4 
2-6 1 

2 
3-6 1 

2 

2-4 ≈1 2-4 ≈1 5 
3-5 ≈1 

≈2 
3-5 ≈1 

≈2 

1-2 ≈0 1-2 ≈0 
3-4 ≈1 3-4 ≈1 6 
5-6 ≈0 

≈1 
5-6 ≈0 

≈1 

Total Size=19 ≈17 Size=19 ≈17 
 
similar condition until fourth step in which the balanced 
condition for the row 0 and 7 doesn’t exist as the largest and 
smallest value is founded in third step. In this condition there 
are different conditions that have competitive amount of 
entropy. From this step a proposed network is formed to 
compare with Batcher even-odd sorting network. Fig. 4 shows 
the proposed network configuration. The modeling of this 8-
sorting network is coming in the Fig. 6. The comparison 
between Fig. 5. and Fig. 6. shows that the different situation of 
the proposed network, results in different condition for future 
steps. The final results are coming in Table I. the results shows 
that although the probabilistic model shows difference in 
results there is no difference between two methods and the 
maximization of entropy results in the same performance and 
there is no need to try and error to find the optimum design. In 
other word the optimum design will forms absolutely if the 
mentioned rules be utilized correctly. It may show not such 
importance in this small problem but for larger number of 
inputs even the test of correctness of a design may become 
impossible. In order to test of the proposed network in this 
work a software simulator is performed in C++ which generate 
all 8!=40320 different permutations of {1,2,3…,8} and test the 
sorted sequence to ensure the correctness of the sorting 
function. This test takes few seconds to be run on a PC. 
Suppose we are going to test a 64-sorter with 64! permutation 
of input it may take more than 1079 years to be run on such PC. 
Another way to test reliability of sorting networks is trough the 
Zero–One principle and test all 0/1 sequences of length n. 
Although Zero–One principle may simplify the reliability test 
of an absolute sorting network, for the approximate sorting 
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  0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
0 █   █ █ █ █ █ █ █       █ █ █ █ █               █               █               █               

1   █ █ █ █ █ █ █   █ █   █ █ █ █   █   ¾ █ █ █     █ ¾ ¾ █         █ ½ ¾ ⅜         █   ¾         

2 █ █ █   █ █ █ █   █ █   █ █ █ █     █ ¾ █ █ █     ¾ █ ¾ █ █       ½ █ ½   ¾         █ ⅝   ¾     

3 █ █   █ █ █ █ █       █ █ █ █ █   ¾ ¾ █ █ █ █     ¾ ¾ █ █ █ █     ¾ ½ █ █   ⅜     ¾ ⅝ █         

4 █ █ █ █ █   █ █ █ █ █ █ █         █ █ █ █ ¾ ¾     █ █ █ █ ¾ ¾     ⅜   █ █ ½ ¾           █ ⅝ ¾   

5 █ █ █ █  █ █ █ █ █ █ █   █ █     █ █ █ ¾ █         █ █ ¾ █ ¾       ¾   ½ █ ½       ¾   ⅝ █     

6 █ █ █ █ █ █ █   █ █ █ █   █ █     █ █ █ ¾   █         █ ¾ ¾ █         ⅜ ¾ ½ █           ¾   █   

7 █ █ █ █ █ █   █ █ █ █ █       █               █               █               █               █ 

  Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 
 

Fig. 5. The modeling of 8-input Batcher’s even-odd sorting network. 
 

  0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
0 █   █ █ █ █ █ █ █       █ █ █ █ █               █               █               █               

1   █ █ █ █ █ █ █   █ █   █ █ █ █   █   ¾ █ █ █     █   ½   ⅜ ¾     █   ½   ¾ ¾     █   ⅞   ⅞    

2 █ █ █   █ █ █ █   █ █   █ █ █ █     █ ¾ █ █ █       █ ½ █ █ ⅜       █ ¾   ½ ¾       █ ¾   ⅞ ⅞   

3 █ █   █ █ █ █ █       █ █ █ █ █   ¾ ¾ █ █ █ █     ½ ½ █ █ █       ½ ¾ █ █         ⅞ ¾ █        

4 █ █ █ █ █   █ █ █ █ █ █ █         █ █ █ █ ¾ ¾       █ █ █ ½ ½         █ █ ¾ ½           █ ¾ ⅞   

5 █ █ █ █  █ █ █ █ █ █ █   █ █     █ █ █ ¾ █       ⅜ █ █ ½ █       ¾ ½   ¾ █       ⅞ ⅞   ¾ █    

6 █ █ █ █ █ █ █   █ █ █ █   █ █     █ █ █ ¾   █     ¾ ⅜   ½   █     ¾ ¾   ½   █       ⅞  ⅞   █   

7 █ █ █ █ █ █   █ █ █ █ █       █               █               █               █               █ 

  Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 
 

Fig. 6. The modeling of 8-input proposed (Semi-Batcher even-odd) sorting network. 
 
 
network or network of success probability at least 1-ε 
according to definition all n! permutations most be tested, so 
the analytical methods such as information theory based 
analysis of the networks may shows more benefit. Some 
probabilistic sorting networks are designed and tested 
trough this method which has less cost and time. The 
description about this designs is beyond the scope of this 
paper.  
 

V.  FUTURE WORKS 

 Although near optimum sorting networks are existed 
from several decades ago, proposing new, simple and 
efficient merge sort technique which has several advantages 
on performance over previous merge sort technique is still 
underway [10]. Recently an increasing interest in dynamic 
scheduling is shown specially in dynamic load balancing in 
parallel merge sort [11]. This idea that if some information 
from data sequence was predictable, the total amount of 
information which we most earn to sort the sequence will 
reduce, encourage us to design a reconfigurable sorting 
network whit the lower total cost and delay. This network 
can even approximately sort the sequence of data, which 
may be reliable in some applications in which a limited 
tolerance is predicted and is negligible. 

As inherently these problems engage with probabilistic 
characteristic of the phenomena, it is expected that the 

information theory based dynamic architecture design 
become a hot solution for this problems. So if the basis of 
architecture and hardware design reinforced with the 
concepts of the information theory, a great contribution is 
predictable. 

 
 

VI. CONCLUSION 

A probabilistic model has been introduced to 
investigating efficiency in parallel sorting networks, 
utilizing the concepts of information theory. Performance 
analysis of Batcher even-odd sorting networks with eight 
inputs has been done using this method. A semi-Batcher 
sorting network has been proposed to show that there is no 
need to try and error in complete design to find the optimum 
design using the proposed method of design and analysis. It 
has been shown that using this method, the source of the 
redundancy and unparallelizem can be monitored 
specifically and an analytical proving for efficiency of 
designs can be presented. More contribution in the large size 
and complicated especially approximate working 
architectures design and test has been shown. More accurate 
bounds for the performance characteristics have been 
determined. Some examples have been introduced trough 
future works in which this method may show more 
elegance. 
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