
Evolving Artificial Neural Networks for Prediction in Robocup Soccer

Abstract: The prediction of the future states in Multi
Agent Systems such as Robocup Soccer has been a
challenging problem since the beginning of the MAS.
Robocup 3D Soccer is selected because of its global
view of the agents. An Artificial Neural Network is used
for prediction. The goal is to concentrate on the design
of an optimal ANN. In order to handle it, a genetic
algorithm is used for optimization of the design, which
shows a great improvement over the manual methods.

Keywords: Genetic Algorithm, Evolutionary
Strategy, Artificial Neural Network, Opponent
Modelling, Prediction, Robocup Soccer.

1 Introduction

Considering the growth of Robocup Teams in
recent years, constructing a hardwired team which
has a constant behavior against the opponent is not
a good choice anymore. The agent must have more
flexible behavior while playing against a new
team. Therefore it can be concluded that the
understanding of how the opponent plays is an
important fact. This makes Opponent Modelling
becomes an active branch in soccer simulation
communities' efforts.
An Artificial Neural Network may learn pattern
between its inputs and outputs, thus can be used to
model a soccer team. A new problem arises here:
Which network architecture has the best quality?
Because of the limited time in a match, this
problem can have a great effect in efficiency and
accuracy of the predicted values. Neural networks
domain is complex, so evolving neural networks
can be the right method to find the optimal
network.

Evolutionary Algorithms are used to perform
various tasks, such as connection weight training,
architecture design and learning rule adaptation
[2]. Excessive works in architecture design with
evolutionary algorithms prove its power in
architecture design of an ANN.
The purpose of the Robocup Simulated Soccer
League is to provide a standardized problem
domain for Artificial Intelligence research based
on a soccer simulation called the Robocup Soccer
Server [5].
Two teams of eleven agents which have been
programmed by human must play a soccer game
and they compete to win the match. The agents are
autonomous to perform well-defined actions
known as drive and kick. The former moves the
agent and the latter kicks the ball if the agent is
near the ball. Agents cannot jump, so the goal is
not high. Agents get a message from the server
each cycle and they have limited time to decide
which action is the best, and then they send their
decided actions to the server. In soccer 3D a
message contains information on the agent, its
team mates, the opponent positions and the
location of the ball.
Agent's global view of the world makes the
understanding the world state become easier.
Using this information a neural network can be
trained.
The prediction system will be described in the next
section. In section 3, evolution of neural network
will be explained and finally the results of the
system will be discussed in section 4.

M. Moghimi Najaf Abadi, C. Lucas
ECE Department

University of Tehran
m.moghimi@ece.ut.ac.ir

2 The Prediction System

Artificial Neural Networks are popular machine
learning methods which are widely used in
Robocup [6]. For prediction purposes, a neural
network is used, which gets the state of the match
and the outputs opponents' movements. A multi
layer feed-forward neural net is used for this task
and Back Propagation Algorithm is used for
training the network. Section 3 describes the
network architecture. Yet a problem remains,
which is the input and output of the network.
The prediction is more useful for defender agents
than the attackers because defenders' play is more
passive and depends on what opponent attackers
do. Thus the movement of opponent attackers is a
good choice for the output. It's better to predict the
opponent attackers' positions in the next k cycles in
the future. The integer k should not be so large,
because it will decrease the accuracy of the
prediction system. There are two parameters x and
y for each player, so the output size is twice the
number of the attackers which the system wants to
predict.
The input is more evident because the world state
is well defined. It contains forty seven real valued
parameters, two for each player and three for the
ball as it has z parameter in addition to x and y.
Other values may be added to the input set, such as
the preceded state of the world or the objects
velocities, but adding these values results in long
training time.
Prediction system output is used by defenders, so
some input and output pairs should be ignored,
because opponent attack states are required, in
which the last of the ball owners is the opponent
and the ball is as near to the goal as a threshold and
it is moving towards the goal.
It should be noted that the agent cannot find out the
real ball owner, but it can assume that the player
controlling the ball executes a kick if the ball
velocity increases [3].

3 Evolving Neural Networks

One interesting result in the evolving of the neural
networks is the digit recognition problem which
consists of identifying fixed representation of
digits 1-9 correctly. The result shows that no
hidden neurons is needed that makes experimenters
surprised as they were not aware of the fact that the
problem was linearly separable [4].
Xin Yao divided the evolving neural networks
researches into two categories, direct encoding

scheme and indirect scheme [2]. Direct encoding
scheme is powerful, but its search space, neural
nets space, in this problem is very large because of
the numerous input neurons and probably the
hidden neurons. Indirect methods such as
parameterized, developmental rule or fractal
representation work with small search space. Thus,
faster convergence with indirect methods is
expected.
In this research, combination of a special
parameterized representation and nodes transfer
function evolution is presented. GA's are capable
of many non traditional modifications and can be
changed in the following form to evolve neural
networks.

Table 1: Pseudo Code for Genetic Algorithm

1 Initialize an original population of the
individuals (chromo+somes) randomly.

2 Decode each individual to an ANN.

3

Evaluate the fitness function, or similarly the
error function, for each individual by letting
the ANN train and computing its error
function and its training time.

4 Select parents for crossover.

5 Apply crossover and mutation operators,
which form the next population.

6 Goto 2.

The following two subsections explain the
solutions for these representation and fitness
problems.

3.1 Representation Scheme

At the machine level, an individual in the
population is a string of bits or numbers. To the
GA, an individual is identical to its chromosome
[1]. How to encode an individual to its string is the
representation problem.
There is a multi layer neural network which we
want to encode to a string of numbers. The
representation depends on what information we
want to store. The most important parameters in
the design of a network are number of its hidden
layers, the size of the layers and neurons activation
function. The last fact is not directly related to the
architecture. These are major parameters an ANN
needs to be set.
One simple solution to this problem is to store one
number for each hidden layer which represents its

size. But how can GA test different layers number?
One solution is to run the GA for different layers
number to find the best solution similar to Iterative
Deepening Search Algorithm. Another solution
that is implemented in this research is to let the GA
change the number of the layers. Again, the simple
approach is to encode the number of the layers as a
new parameter and let the chromosome contain the
information of the layers which is less than an
integer. It represents the maximum number of
layers. A better solution is to use variable length
chromosomes which means the higher the layers
number, the lengthier the chromosome.
Because activation functions space is very huge,
which equals to one dimensional functions space,
the selective approach is used. The GA must select
among Sigmoid, Gaussian, Linear and Tan-
Sigmoid which are the most applied functions used
for neurons activation function.
To put it more precisely, for each layer one number
for activation function and one for the layer size is
stored, which construct the layer information, and
the layers themselves construct the whole
chromosome. To handle its variable length, as
figure 1 shows a modified version of the crossover
operator is used which selects one point in each
parent, breaks the two parents’ chromosomes and
then connect one piece of each parent to one piece
of another. In this way, chromosomes can have
different lengths.

Figure 1: Crossover schema

3.2 Computing Fitness

Using the fitness function, GA tries to find the best
solution which maximizes the fitness function.
This function is used for giving a rank to each
individual in the population in order to give it more
chance to live or to have a child. The error
function can similarly be used for this purpose, and
in some problems it is easier to compute the error
rather than the fitness, especially in evolving
neural networks [1]. Given a non-trained neural
network which is constructed from an individual

chromosome, the system must be capable of
computing its fitness. First of all the network
should be trained train network with a special
dataset. Since long time is needed for convergence
of an ANN, it is impossible to let the network train
until it has an error value less than a threshold. The
fitness is only needed for comparison, so if we
have set the same conditions for networks, we can
compare them together. For instance, letting the
networks be trained within some constant epochs
can be done in a short period of time.
Two main factors are available. They are output
quality and training time or the network
complexity. The best value that represents the
network complexity is its training time for our
purpose. We can compare the network output with
the desired outputs for a dataset to compute the
output error. We can add these factors with
different coefficients. Consider the output of
network rmse to be oe and the training time to be
tt. The error function is computed by the following
formula:
error oe ttα β= × + × (1)
 Since function is only used for comparison as
mentioned, only α / β is important. Considering the
importance of time and the network error, we have
different error functions, and results show that each
has its own optimal network. The α / β factor is
very effective on the result. Decreasing the value
of α / β results in small networks with less
complexity and vice versa. The next section shows
the system output for different α's and β's.

4 Results

The following tables show the result of GA with
specified parameters. The training time has
important effect on the optimal neural network.
These results reveal the fact that ``the lower the α /
β, the bigger the network''. The best value for α / β
for prediction task in a real play is 1e-5. The mean
error of the optimal network founded by the GA is
about 5 meters for k equals to 5, if it was trained
during a reasonable time in a match.
This means that it can predict the opponent
attacker’s positions in 5 next cycles with 5 meters
accuracy. The best manual designed network is
less accurate. Its error is at least 8 meters in
predicting their positions.

5 Conclusion and Future Works

These results document the quality of the solution
that GA's afford when applied to prediction task.

The saving in time and labor are among their most
important advantages. Equally important is the
higher level confidence in the solution. The genetic
algorithm can cover considerably larger search
spaces than be covered manually [1].
This system can be used when the dataset is
available in offline mode. The long time needed
for running the genetic algorithm makes it non
practical for online uses.
Future work is to design a system to be used in
online mode which needs faster algorithms.

References

[1] R. Hochman and T. Khoshgoftaar and E. Allen

and J. Hudepohl, ``Using the genetic algorithm
to build optimal neural networks for fault-
prone module detection'', Proceeding of the
Seventh Int. Symposium on Software
Reliability Engineering, pp 152-162. Oct. 30 -
Nov 2, 1996, White Plians, N.Y.

[2] X. Yao, ``Evolving Artificial Neural
Networks'', Proceeding of the IEEE, VOL. 87,
NO. 9, Sep 1999.

[3] T.Steffens, ``Adapting Similarity Measures to
Agent Types in Opponent Modelling'',
Workshop on Modeling Other Agents from
Observasions at AAMAS 2004, (2004), pp
125-128.

[4] A. J. Jones, ``Genetic algorithms and their
applications to the design of neural networks.'',
Journac of Neural Computing & Applications,
Feb 1993, pp 32-45.

[5] M. Chen, K. Dorer, E. Foroughi, et al, ``Users
Manual, Robocup Soccer Server, for Soccer
Server Version 7.07 and later'' February 11,
2003.

[6] M. H. Dezfoulian, N. Kaviani, A. Nikanjam, et
al, ``Training a Simulated Soccer Agent how
to Shoot using Artificial Neural Networks'',
Proceeding of the Iranian Researchers
Conference in Europe, 2005.

Table 2: The result for α = 1 and β = 1e − 10

Generation Fitness Average Fitness Best Network Architecture

10 7e+11 7e+12 2 tansig 24 sigmoid

20 6e+11 6e+12 3 tansig 20 identity

30 4e+11 7e+12 5 tansig 20 identity

40 4e+11 5e+12 5 tansig 20 identity

50 4e+11 5e+12 5 tansig 20 identity

Table 3: The result for α = 1 and β = 0

Generation Fitness Average Fitness Best Network Architecture

10 1.68e-02 3.62e-02 5 tansig 24 sigmoid

20 1.66e-02 3.80e-02 5 tansig

30 1.60e-02 3.55e-02 5 tansig 24 gaussian 2 identity

40 1.60e-02 4.51e-02 5 tansig 24 gaussian 2 identity

50 1.40e-02 1.14e-01 5 tansig 24 gaussian 2 identity

Table 4: The result for α = 1 and β = 1e − 5

Generation Fitness Average Fitness Best Network Architecture

10 70040.6 100040.6 2 tansig 24 gaussian

20 66040.6 70020.6 2 tansig

30 30040.6 50043.4 1 tansig

40 30040.6 61020.2 1 tansig

50 30040.6 30130.2 1 tansig

