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Abstract: The prediction of the future states in Multi 
Agent Systems such as Robocup Soccer has been a 
challenging problem since the beginning of the MAS. 
Robocup 3D Soccer is selected because of its global 
view of the agents. An Artificial Neural Network is used 
for prediction. The goal is to concentrate on the design 
of an optimal ANN. In order to handle it, a genetic 
algorithm is used for optimization of the design, which 
shows a great improvement over the manual methods. 
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1 Introduction 
 
Considering the growth of Robocup Teams in 
recent years, constructing a hardwired team which 
has a constant behavior against the opponent is not 
a good choice anymore. The agent must have more 
flexible behavior while playing against a new 
team. Therefore it can be concluded that the 
understanding of how the opponent plays is an 
important fact. This makes Opponent Modelling 
becomes an active branch in soccer simulation 
communities' efforts.  
An Artificial Neural Network may learn pattern 
between its inputs and outputs, thus can be used to 
model a soccer team. A new problem arises here: 
Which network architecture has the best quality? 
Because of the limited time in a match, this 
problem can have a great effect in efficiency and 
accuracy of the predicted values. Neural networks 
domain is complex, so evolving neural networks 
can be the right method to find the optimal 
network.  

Evolutionary Algorithms are used to perform 
various tasks, such as connection weight training, 
architecture design and learning rule adaptation 
[2]. Excessive works in architecture design with 
evolutionary algorithms prove its power in 
architecture design of an ANN. 
The purpose of the Robocup Simulated Soccer 
League is to provide a standardized problem 
domain for Artificial Intelligence research based 
on a soccer simulation called the Robocup Soccer 
Server [5]. 
Two teams of eleven agents which have been 
programmed by human must play a soccer game 
and they compete to win the match. The agents are 
autonomous to perform well-defined actions 
known as drive and kick. The former moves the 
agent and the latter kicks the ball if the agent is 
near the ball. Agents cannot jump, so the goal is 
not high. Agents get a message from the server 
each cycle and they have limited time to decide 
which action is the best, and then they send their 
decided actions to the server. In soccer 3D a 
message contains information on the agent, its 
team mates, the opponent positions and the 
location of the ball.  
Agent's global view of the world makes the 
understanding the world state become easier. 
Using this information a neural network can be 
trained. 
The prediction system will be described in the next 
section. In section 3, evolution of neural network 
will be explained and finally the results of the 
system will be discussed in section 4. 
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2 The Prediction System 
 
Artificial Neural Networks are popular machine 
learning methods which are widely used in 
Robocup [6]. For prediction purposes, a neural 
network is used, which gets the state of the match 
and the outputs opponents' movements. A multi 
layer feed-forward neural net is used for this task 
and Back Propagation Algorithm is used for 
training the network. Section 3 describes the 
network architecture. Yet a problem remains, 
which is the input and output of the network.  
The prediction is more useful for defender agents 
than the attackers because defenders' play is more 
passive and depends on what opponent attackers 
do. Thus the movement of opponent attackers is a 
good choice for the output. It's better to predict the 
opponent attackers' positions in the next k cycles in 
the future. The integer k should not be so large, 
because it will decrease the accuracy of the 
prediction system. There are two parameters x and 
y for each player, so the output size is twice the 
number of the attackers which the system wants to 
predict.  
The input is more evident because the world state 
is well defined. It contains forty seven real valued 
parameters, two for each player and three for the 
ball as it has z parameter in addition to x and y. 
Other values may be added to the input set, such as 
the preceded state of the world or the objects 
velocities, but adding these values results in long 
training time.  
Prediction system output is used by defenders, so 
some input and output pairs should be ignored, 
because opponent attack states are required, in 
which the last of the ball owners is the opponent 
and the ball is as near to the goal as a threshold and 
it is moving towards the goal.  
It should be noted that the agent cannot find out the 
real ball owner, but it can assume that the player 
controlling the ball executes a kick if the ball 
velocity increases [3]. 
 
3 Evolving Neural Networks  
 
One interesting result in the evolving of the neural 
networks is the digit recognition problem which 
consists of identifying fixed representation of 
digits 1-9 correctly. The result shows that no 
hidden neurons is needed that makes experimenters 
surprised as they were not aware of the fact that the 
problem was linearly separable [4].  
Xin Yao divided the evolving neural networks 
researches into two categories, direct encoding 

scheme and indirect scheme [2]. Direct encoding 
scheme is powerful, but its search space, neural 
nets space, in this problem is very large because of 
the numerous input neurons and probably the 
hidden neurons. Indirect methods such as 
parameterized, developmental rule or fractal 
representation work with small search space. Thus, 
faster convergence with indirect methods is 
expected.  
In this research, combination of a special 
parameterized representation and nodes transfer 
function evolution is presented. GA's are capable 
of many non traditional modifications and can be 
changed in the following form to evolve neural 
networks.  
 

Table 1: Pseudo Code for Genetic Algorithm 

1 Initialize an original population of the 
individuals (chromo+somes) randomly. 

2 Decode each individual to an ANN. 

3 

Evaluate the fitness function, or similarly the 
error function, for each individual by letting 
the ANN train and computing its error 
function and its training time. 

4 Select parents for crossover. 

5 Apply crossover and mutation operators, 
which form the next population. 

6 Goto 2. 
 
The following two subsections explain the 
solutions for these representation and fitness 
problems. 
 
3.1 Representation Scheme 
 
At the machine level, an individual in the 
population is a string of bits or numbers. To the 
GA, an individual is identical to its chromosome 
[1]. How to encode an individual to its string is the 
representation problem.  
There is a multi layer neural network which we 
want to encode to a string of numbers. The 
representation depends on what information we 
want to store. The most important parameters in 
the design of a network are number of its hidden 
layers, the size of the layers and neurons activation 
function. The last fact is not directly related to the 
architecture. These are major parameters an ANN 
needs to be set.  
One simple solution to this problem is to store one 
number for each hidden layer which represents its 



size. But how can GA test different layers number? 
One solution is to run the GA for different layers 
number to find the best solution similar to Iterative 
Deepening Search Algorithm. Another solution 
that is implemented in this research is to let the GA 
change the number of the layers. Again, the simple 
approach is to encode the number of the layers as a 
new parameter and let the chromosome contain the 
information of the layers which is less than an 
integer. It represents the maximum number of 
layers. A better solution is to use variable length 
chromosomes which means the higher the layers 
number, the lengthier the chromosome.  
Because activation functions space is very huge, 
which equals to one dimensional functions space, 
the selective approach is used. The GA must select 
among Sigmoid, Gaussian, Linear and Tan-
Sigmoid which are the most applied functions used 
for neurons activation function.  
To put it more precisely, for each layer one number 
for activation function and one for the layer size is 
stored, which construct the layer information, and 
the layers themselves construct the whole 
chromosome. To handle its variable length, as 
figure 1 shows a modified version of the crossover 
operator is used which selects one point in each 
parent, breaks the two parents’ chromosomes and 
then connect one piece of each parent to one piece 
of another. In this way, chromosomes can have 
different lengths.  
 

 
Figure 1: Crossover schema 

 
3.2 Computing Fitness 

 
Using the fitness function, GA tries to find the best 
solution which maximizes the fitness function. 
This function is used for giving a rank to each 
individual in the population in order to give it more 
chance to live or to have a child.  The error 
function can similarly be used for this purpose, and 
in some problems it is easier to compute the error 
rather than the fitness, especially in evolving 
neural networks [1]. Given a non-trained neural 
network which is constructed from an individual 

chromosome, the system must be capable of 
computing its fitness.  First of all the network 
should be trained train network with a special 
dataset.  Since long time is needed for convergence 
of an ANN, it is impossible to let the network train 
until it has an error value less than a threshold. The 
fitness is only needed for comparison, so if we 
have set the same conditions for networks, we can 
compare them together. For instance, letting the 
networks be trained within some constant epochs 
can be done in a short period of time.  
Two main factors are available. They are output 
quality and training time or the network 
complexity. The best value that represents the 
network complexity is its training time for our 
purpose. We can compare the network output with 
the desired outputs for a dataset to compute the 
output error. We can add these factors with 
different coefficients.  Consider the output of 
network rmse to be oe and the training time to be 
tt. The error function is computed by the following 
formula: 
error oe ttα β= × + ×                                      (1) 
 Since function is only used for comparison as 
mentioned, only α / β is important. Considering the 
importance of time and the network error, we have 
different error functions, and results show that each 
has its own optimal network.  The α / β factor is 
very effective on the result. Decreasing the value 
of α / β results in small networks with less 
complexity and vice versa. The next section shows 
the system output for different α's and β's.   
 
4 Results 
 
The following tables show the result of GA with 
specified parameters. The training time has 
important effect on the optimal neural network. 
These results reveal the fact that ``the lower the α / 
β, the bigger the network''. The best value for α / β 
for prediction task in a real play is 1e-5. The mean 
error of the optimal network founded by the GA is 
about 5 meters for k equals to 5, if it was trained 
during a reasonable time in a match. 
This means that it can predict the opponent 
attacker’s positions in 5 next cycles with 5 meters 
accuracy. The best manual designed network is 
less accurate. Its error is at least 8 meters in 
predicting their positions. 
 
5 Conclusion and Future Works 
 
These results document the quality of the solution 
that GA's afford when applied to prediction task. 



The saving in time and labor are among their most 
important advantages. Equally important is the 
higher level confidence in the solution. The genetic 
algorithm can cover considerably larger search 
spaces than be covered manually [1]. 
This system can be used when the dataset is 
available in offline mode. The long time needed 
for running the genetic algorithm makes it non 
practical for online uses.  
Future work is to design a system to be used in 
online mode which needs faster algorithms. 
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Table 2: The result for α = 1 and β = 1e − 10 

Generation Fitness Average Fitness Best Network Architecture 

10 7e+11 7e+12 2 tansig 24 sigmoid 
 

20 6e+11 6e+12 3 tansig 20 identity 
 

30 4e+11 7e+12 5 tansig 20 identity 
 

40 4e+11 5e+12 5 tansig 20 identity 
 

50 4e+11 5e+12 5 tansig 20 identity 
 

 
Table 3: The result for α = 1 and β = 0 

Generation Fitness Average Fitness Best Network Architecture 

10 1.68e-02 3.62e-02 5 tansig 24 sigmoid 

20 1.66e-02 3.80e-02 5 tansig 

30 1.60e-02 3.55e-02 5 tansig 24 gaussian 2 identity 

40 1.60e-02 4.51e-02 5 tansig 24 gaussian 2 identity 

50 1.40e-02 1.14e-01 5 tansig 24 gaussian 2 identity 

 
Table 4: The result for α = 1 and β = 1e − 5 

Generation Fitness Average Fitness Best Network Architecture 

10 70040.6 100040.6 2 tansig 24 gaussian 

20 66040.6 70020.6 2 tansig 

30 30040.6 50043.4 1 tansig 

40 30040.6 61020.2 1 tansig 

50 30040.6 30130.2 1 tansig 

 


