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Multistage Amplifier Freq. Response
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Dominant-pole Approximation:

For All-pole system (when there is no 
dominant zero!) : 
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Where K is a constant and p1,p2,…,pn are the 
poles.
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Multistage Amplifier Freq. Response
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From (7.64) and (7.65) : 

An important practical case:
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p1p2p3 Fig.7.14. pole-plot with dominant pole.
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Multistage Amplifier Freq. Response
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From (7.65) the gain is:

If a dominant pole exists then:

This approximation is quite accurate at least until 
ω=|p1|, so:

( )

( )

3 1

3
1

7.70
dominant pole situation!1 7.71

dB

dB

p

b

ω

ω

−

−

⎧ = ⎫
⎪ ⎪→⎨ ⎬≈⎪ ⎪
⎩ ⎭



2

Omid Shoaei, Univ. of Tehran
5

Zero-Value Time-Constant Analysis

This is an approximate method of analysis that 
allows an estimate to be made of the dominant-
pole freq. (-3dB freq.) of complex circuits.
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Zero-Value Time-Constant Analysis
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Consider the circuit shown in fig.7.15:

For analysis, the cap voltages, V1, V2, ad V3 are chosen as 
variables. The external input Vi is removed and the circuit 
excited with three independent current sources i1, i2 and i3
across the caps:

rπ
V2+

-
Cπ

VbrbRs C μ

xC
i3

i2

i1

Vb’

Vi
1mg vV1

Vb

Vo
+
-

RL

Fig.7.15: A CE circuit with internal Caps.
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Zero-Value Time-Constant Analysis

( ) ( ) ( ) ( )3 2 2 3
3 2 1 0 0 1 2 31           7.75 , 7.76s k s k s k s k k b s b s b sΔ = + + + = + + +

The g terms are conductions. Note that terms involving s contributed 
by the caps are associated only with their respective cap voltage and 
appear only on the diagonal of the system determinant.

we showed previously that if there are no dominant zeros, and if there 
is a dominant pole, then:
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Zero-Value Time-Constant Analysis

Poles of the transfer function are zeros of determinant Δ:

( ) ( )
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This form is like (7.64).

Note that this is a 3rd-order determinant 
because there are three caps in the circuit. 
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Zero-Value Time-Constant Analysis
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K0 in (7.75) is the value of Δ(s) if all caps (Cx=Cµ=Cπ=0):

Consider now the term k1s in (7.75) from (7.72)-(7.74).

It is apparent that s only occurs when associated with a capacitance.

( )1 1 2 3                      7.78xk s h sC h sC h sCπ μ⇒ = + +

Where h terms are constants.
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Zero-Value Time-Constant Analysis

h1 can be evaluated by expanding the determinant of (7.72) to 
(7.74) about the first row:

( ) ( ) ( )11 11 12 12 13 13                     7.79s g sC g gπΔ = + Δ + Δ + Δ

Where Δ11, Δ12 and Δ13 are cofactors of determinant.

(7.72) to (7.74) show that Cπ only occurs in the first 
term of (7.79), Δ12 has only Cx and Δ13 has Cµ. In 
Δ11 both Cx and Cµ exists.

Therefore the coefficient of sCπ in (7.78) is found by evaluating Δ11 with 
Cµ=Cx=0 which eliminates the other capacitive terms in Δ11.

We need to set Cµ=Cx=0. Otherwise the order of coefficient of Cπ will be higher than 
s1.

Which includes Cµ and Cx terms! (no Cπ)
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Zero-Value Time-Constant Analysis

( )
0

1 11
7.80

C Cx

h
μ = =

= Δ

The coefficient of sCπ is h1 in (7.78):

Now we expand the determinant about the second row:

( ) ( ) ( )21 21 22 22 23 23 7.81s g g sC gμΔ = Δ + + Δ + Δ

Cµ occurs only in 2nd term in (7.81). [Δ21 has only Cx and Δ23 has only Cπ]
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Zero-Value Time-Constant Analysis

( )
0

2 22
7.82

C Cx
h

π = =
= Δ

The coefficient of sCµ is found by evaluating Δ22 when Cπ=Cx=0, which 
eliminate the other Cap terms in Δ22 (which includes both Cπ and Cx terms!).

This coefficient of sCµ is h2 in (7.78):

Similarly by expanding about 3rd-row:
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3 33
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h

π μ= =
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Zero-Value Time-Constant Analysis
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Combining (7.78) with [(7.80),(7.82) and (7.83)] we have:

Now consider i2=i3=0 in fig. 7.15.

Solving Eqns. (7.72)-(7.74) for v1 gives:
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Zero-Value Time-Constant Analysis

011
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C Cxμ = =
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μ π
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Δ Δ

This is the driving point impedance at Cπ node pair and, 

Is the driving-point resistance at the node pair when all 
caps are equal to zero because:

We define:

( )11
0 0

0

7.88
xC CR

μπ = =
Δ

=
Δ
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Zero-Value Time-Constant Analysis

022
0

0

C CxR π
μ

= =
Δ

=
Δ

Similarly:

Is the driving point resistance at the Cµ node pair with all capacitors put equal 
to zero.

therefore from (7.85) we can write:

( )1 0 0 0 7.89x xb R C R C R Cπ π μ μ= + +

The time constant in (7.89) are called “zero-value time constant”
because all caps are put equal to zero to perform the calculation.
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Zero-Value Time-Constant Analysis

( )3
1 7.90dB

oT
ω− ≈

∑

Thus: 

Where ∑T0 is the sum of the Zero-Value time constants.

for circuit of fig.7.15 one can show:

( )1 0 0 0 7.89x xb R C R C R Cπ π μ μ= + +

Where Rπ0 is the driving-point resistance at Cπ node pair with 
all capacitors equal to zero.
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Zero-Value Time-Constant Analysis

Rµ0 is the driving-point resistance at Cµ node pair with all Caps 
equal to zero, and Rx0 the same for Cx. 

Although derived in terms of a specific example, this result is true 
in any circuit for which the assumptions made in this analysis are 
valid! (such as no dominant zero and a dominant pole!)
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Zero-Value Time-Constant Analysis (Ex.)
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For Cµ:    we apply a test current i at the Cµ terminals 
as shown in fig.7.16.

i

RLgmv1V1

V+ -
+
-

rπRs+rb Vo

+
-

Fig. 7.16

For Cπ, by inspection:

( ) ( )0 || 7.91s bR r R rπ π= +
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Emitter-Follower (Cont’d)

rπ Cπ

C μ

rb

xC

+ -

+ -
B

B’

Why Rb<<rπ results in Rx0≃Rμ0?

The negative plates of Cμ and Cx are tied together. So if we have their 
positive plates tied too then Cμ will be in parallel with Cx having identical 
driving-point resistance (i.e. Rx0≃Rμ0).
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Emitter-Follower (Cont’d)

'
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B b r r

rv
v r r

π

π
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It is obvious at least in DC that if Rb<<rπ then:

So the approximation Rb<<rπ leads to Rx0≃Rμ0!
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Zero-Value Time-Constant Analysis (Ex.)
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Rx0 can be calculated in a similar fashion. It is obvious that

0 0x bR R if r rμ π≈

Cx can be lumped in with Cμ if rb is small:
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Zero-Value Time-Constant Analysis (Ex.)

Zero-value time constant gives the result with much less effort. 
However it does not give any information on the non-dominant
poles!

This is the same as what obtained in (7.24) & (7.25) by exact analysis; 
R in (7.25) is equal to Rπ0 in (7.98).
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Zero-value time constant 
EmitterEmitter--FollowerFollower

Rs

Re

Vi
Vo

rb

Rs i
rπ +

-
V1 gmv1

RE

+

-
Vo

B’

Now see zero-value time constant approach for emitter-follower of Fig. 
7.9 where only Cπ has been included. Rπ0 can be calculated by inserting 
a current source i:

Fig. 7.17Fig. 7.9
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Emitter-Follower (Cont’d)
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Zero-Value Time-Constant Analysis
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Emitter follower (Cont’d):
For Cµ we have:

C μ

( )1 1i m ER r g Rπ= +
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Zero-Value Time-Constant Analysis
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Note: 

1- For a large RS (output resistance of a preceding CE stage) 

& a small resistive RE :

2- For a large RS and a large RE (like a current source), then:

( ) ( ) ( ) ( ) ( )0 1 || ||m E S b m E S b S bR r g R R r g r R R r R rμ π π≈ + + ≈ + ≈ +

Note: higher RE results in a lower Rµ0 (time-constant), so a higher BW!
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Emitter-Follower (Cont’d)

Thus:

3dB
0 0

1 (7.102)
R C R Cπ π μ μ

ω− =
+

Interesting to note that performing the KCL Nodal Analysis while
ignoring Cµ results in:

3dB
0

1 (7.41)
R Cπ π

ω− =
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Emitter-Follower (Cont’d)

1

1 1
1

1 ||
1

m
T

b E

m E

gz
C

r Rp where R r
C R g R

π

π
π

ω−
= ≈ −

+
= − =

+

Which one is the dominant pole? (7.102) is not in agreement with
(7.41) obtained by KCL analysis ignoring Cµ (to be obtained by 
students!).  Zero-value time constant tells us nothing about the 
dominant zero showed in the nodal analysis (ignoring Cµ):

Because of the dominant zero in the results obtained by the nodal 
analysis, the pole frequency obtained there in (7.41) can not the -3dB 
frequency.
If there is a major capacitance between input and output such as Cπ
(in source follower) zero-value time constant can not predict ω-3dB 
(BW) very well!
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Emitter-Follower (Cont’d)

2
1 1 1  for both large    and   

[( ) || ]

 (if be shorted) remaining time constant is : ( || || )
 (if be shorted) remaining time constant is : [(

m m
s E

b s E E

E m

b

g gp R R
r R R C r C R C C C

C C r R g
C C r

μ π π π π π

μ π π

π μ
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= − + + + ≈⎜ ⎟⎜ ⎟+⎝ ⎠
→∞ ⇒

→∞ ⇒

2 1

) || ]
There is a pole-zero cancellation! (  and  )

s ER R
p z

+

Example:
Calculate poles & zero by different analyses: Cµ=1pF, Cπ=10pF, RE=2kΩ, Rs=50Ω, rb=150Ω, 
β=100, Ic=1mA.

Solution:

1. Nodal Analysis (ignoring Cµ): 
In reality, not ignoring Cµ , there are 
two poles such that the above p1 is the 2nd pole 

2. Zero-Value Time Constant Analysis: 
To be checked by Students!
Also No ideas about Zero or 2nd Pole

1

1

2 (568.2MHz)
612MHzT

p
z f

π=
= =

1
1

60 (10pF) + 148 (1pF)
    2 (212.8MHz)

p

π

=
Ω Ω

=
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Zero-value time constant; 
Cascaded CommonCascaded Common--Emitter Freq. ResponseEmitter Freq. Response

Rs RL1

RL2Q2

Q1

Vs

+

-

Vo

Fig.7.18: Single-ended or a differential half circuit

Zero-value time constant is advantageous for circuits with more than one 
device:
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Example: 
Cascaded CommonCascaded Common--Emitter Freq. ResponseEmitter Freq. Response

1 2 1 1

2 1 2 1 1 2

2 2 1 2

10 400 20 5
10 1 10 2

10 5 3 / 6 /

s b b

L cs cs

L m m

R k r r r k C pF
C pF C C pF R k C C pF
r k R k g mA V g mA V

π π

π μ μ

π

= Ω = = Ω = Ω =
= = = = Ω = =

= Ω = Ω = =

Find ω-3dB of  Fig.7.18  With:
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Cascaded CommonCascaded Common--Emitter Freq. ResponseEmitter Freq. Response

Rs rb1

1rπ 1Cπ

1C μ

+

-
V1

gmV1
RL1

Ccs1

rb2

2Cπ2rπ

2C μ

+

-
V2

gmV2 Ccs2
RL2

+

-
Vo

For Cμ1 and Cμ2 Eqn. 7.96 can be applied:

1
1 01 1 01 1 1

01

2
2 02 2 02 2 2

02

(1 ) (7.103)

(1 ) (7.104)

L eff
m L eff

L eff
m L eff

R
C R C R g R

R
R

C R C R g R
R

μ μ μ π
π

μ μ μ π
π

⎧
= + +⎪

⎪
⎨
⎪ = + +⎪⎩

Small signal:

Fig. 7.19
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Cascaded CommonCascaded Common--Emitter Freq. ResponseEmitter Freq. Response

1 1 2 2

2 2

01 1 1 1

01 1 1 1 1 1

02

|| ( ) 5.1
5

|| ( ) 20 || (10.4 ) 6.84
|| ( ) : 10

10 || (10.4 ) 5.1

L eff L b

L eff L

b s

b s s L

R R r r k
R R k
R r r R k k k
R r r R where R R k
R k k k

π

π π

π π

π

= + = Ω
= = Ω

= + = Ω Ω = Ω
= + = = Ω
= Ω Ω = Ω

1 01

2 02

5 6.84 34.2 sec
10 5.1 51 sec

C R ns n
C R ns n

π π

π π

= × =
= × =

Where:

And for Cπ1, Cπ2:

This substituting in (7.103) and (7.104):

1 01

2 02

5.11 6.84(1 3 5.1 ) 116.6 sec
6.84

51 5.1(1 6 5 ) 163.2 sec
5.1

C R ns n

C R ns n

μ μ

μ μ

⎧ = × + × + =⎪⎪
⎨
⎪ = × + × + =
⎪⎩
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Cascaded CommonCascaded Common--Emitter Freq. ResponseEmitter Freq. Response

1 01 1 1

2 02 2 2

2 5.1 sec 10.2 sec
2 5 sec 10 sec

cs cs cs L eff

cs cs cs L eff

C R C R n n
C R C R n n

= = × =⎧
⎨ = = × =⎩

For Ccs1, Ccs2:

Assuming the circuit has a dominant pole, the -3dB freq. 
can be estimated as

9

3
0

9
6

3

1 10 / sec
34.2 51 116.6 136.2 10.2 10

10 / sec 2.6 10 / sec
385.2

413

dB

dB

rad
T

rad rad

f kHz

ω−

−

= =
+ + + + +

= = ×

⇒ =

∑
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Cascaded CommonCascaded Common--Emitter Freq. ResponseEmitter Freq. Response

1

2

3

4

463

4.37

41.06

212

p

p

p

p

f kHz

f MHz

f MHz

f MHz

= −

= −

= −

= −

1

2

478
955

z

z

f MHz
f MHz

= −
= −

3 456 only 10%  errordBf KHz−⇒ = −

A computer simulation gave:


