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Multistage Amplifier Freq. Response

Dominant-pole Approximation:

2 m

A(s)= N(s):a(]4r61154r61zs2 +o.ta,s (7.64)
D(s) 1+bs+b,s®+..+bs"
a,,8,,...,a, and b;,b,,...,b, are constant.

For All-pole system (when there is no
dominant zerol) :

- (7.65)
e

Where K is a constant and p,,p,,...,p, are the
poles.
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Multistage Amplifier Freq. Response

From (7.64) and (7.65) :

b = 1[ ;) (7.66)

An important practical case:

1 . 1
[pu|<|po|| Py, sO that |[—{> Z[——]‘
P =0 B
1
= b= > jw (7.67)
1
o
Ps P2 P4
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Multistage Amplifier Freq. Response

Fig.7.14. pole-plot with dominant pole.

From (7.65) the gain is:

K
2
1+ [ﬂj
2
If a dominant pole exists then:
K

5] CEIEE .

o< p, (7.69)

This approximation is quite accurate at least until

w=|py|, so:
[CEY) :‘pl‘ (7'70)
dominant pole situation!
@ 3 ~ L (7.72) - P
by
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Zero-Value Time-Constant Analysis

Zero-Value Time-Constant Analysis

This is an approximate method of analysis that
allows an estimate to be made of the dominant-
pole freq. (-3dB freq.) of complex circuits.
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Consider the circuit shown in fig.7.15:
is

Sl

iy
R. T A C, :I - A
il

v + V2 +
v W® TC, LEv 9.V, ® RizVo

Fig.7.15: A CE circuit with internal Caps.

For analysis, the cap voltages, V,, V,, ad V, are chosen as
variables. The external input V, is removed and the circuit
excited with three independent current sources iy, i, and i3
across the caps:

i = (911 +sC, )Vl + 0V, + 015Vs (7'72)
iz :(921)V1+(922+3C;1)V2+923V3 (7-73)
i3 =05V + 05V, +(933 + SCX) (7-74)
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Zero-Value Time-Constant Analysis

The g terms are conductions. Note that terms involving s contributed
by the caps are associated only with their respective cap voltage and
appear only on the diagonal of the system determinant.

A(8) = kys® +k,8” + ks + Ky = K (14,5 + b,5% +bys* ) (7.75),(7.76)

we showed previously that if there are no dominant zeros, and if there
is a dominant pole, then:

@ 345 -
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Zero-Value Time-Constant Analysis

Poles of the transfer function are zeros of determinant A:

A(s)=k,s® +K,87 + ks +k, (7.75)
from(7.75):
A(s) =Ko (1+bs+b,s*+bis’) (7.76)

blko:kljhlzﬁ
ko

This form is like (7.64).

Note that this is a 3'9-order determinant
because there are three caps in the circuit.
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Zero-Value Time-Constant Analysis

Ky in (7.75) is the value of A(s) if all caps (C,=C,=C=0):

= from (7.72),(7.73),(7.74):
k, = A

CrmCu=i=0 7.77
C2a, (7.77)

Consider now the term kys in (7.75) from (7.72)~(7.74).

It is apparent that s only occurs when associated with a capacitance.
= ks=hsC, +h,sC, +h;sC, (7.78)
Where h terms are constants.
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Zero-Value Time-Constant Analysis

h, can be evaluated by expanding the determinant of (7.72) to
(7.74) about the first row:

A (S) = (911 + SC” )Au + 01,01, + 013445 (7'79)

Where A1{‘A12 and A, are cofactors of determinant.
Which includes C,, and C, terms! (no C,,)

(7.72) to (7.74) show that C,, only occurs in the first

term of (7.79), A, has only C, and Az has C,,. In

Ay both C, and C, exists.

Therefore the coefficient of sC,, in (7.78) is found by evaluating A4, with
C,~C,=0 which eliminates the other capacitive terms in A,;.

We need to set C,=C,=0. Otherwise the order of coefficient of C,, will be higher than
s'.
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Zero-Value Time-Constant Analysis

The coefficient of sC_; is h, in (7.78):

h=4, (7.80)

C=Cx=0

Now we expand the determinant about the second row:

A(S): gz1A21+(gzz +SC,:)A22 + 0558, (7-81)

C,, occurs only in 2M term in (7.81). [4,, has only C, and A, has only C,]
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Zero-Value Time-Constant Analysis

The coefficient of sC, is found by evaluating A, when C,=C,=0, which
eliminate the other Cap terms in A,, (which includes both C_ and C, terms!).

This coefficient of sC,, is h, in (7.78):

h, =A (7.82)

22¢, 00
Similarly by expanding about 3-row:

h=A, (7.83)

Cr=Cu=0
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Zero-Value Time-Constant Analysis

Combining (7.78) with [(7.80),(7.82) and (7.83)] we have:

K = (A% xc”)+(Azz‘% . xc,,)+(A34c“ . xcxj (7.84)

=

A A A
kO A0 A0 A0

Now consider i,=i;=0 in fig. 7.15.
Solving Eqgns. (7.72)-(7.74) for v, gives:

Ay vi_ Ay
WA T A

(7.86)

Zero-Value Time-Constant Analysis

This is the driving point impedance at C,; node pair and,

A

11‘ C=Cx=0
A0

Is the driving-point resistance at the node pair when all
caps are equal to zero because:

A
11‘ e _ Ay

13
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Zero-Value Time-Constant Analysis
Similarly:
R/jo — zz‘clr:cxzo
A,
Is the driving point resistance at the C,, node pair with all capacitors put equal
to zero.
therefore from (7.85) we can write:
b =R,C,+R,C,+R,C, (7.89)
The time constant in (7.89) are called “zero-value time constant”
because all caps are put equal to zero to perform the calculation.
15
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A *X C,=C4=C,=0 (7'87)
0
We define:
A
R.o=—c . (7.88)
0 Ao C,=C,=0
14
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Zero-Value Time-Constant Analysis
Thus:
1
W g ® = 7.90
—3dB ZTD ( )
Where 3T, is the sum of the Zero-Value time constants.
for circuit of fig.7.15 one can show:
b =R,,C, +R,C, +RC, (7.89)
Where R is the driving-point resistance at C,, node pair with
all capacitors equal to zero.
16
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Zero-Value Time-Constant Analysis

R, is the driving-point resistance at C,, node pair with all Caps
equal to zero, and R, the same for C,.

Although derived in terms of a specific example, this result is true
in any circuit for which the assumptions made in this analysis are
valid! (such as no dominant zero and a dominant pole!)
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Zero-Value Time-Constant Analysis (EXx.)

For C,, by inspection:

Ro=r (R +1,) (7.91)
For C,:  we apply a test current / at the C, terminals Ol
as shown in fig.7.16. + V-
. Rety r, tw 9Vt R ¢o
Vv, =R (7.92) : - -
Vv, =—(i+9,v)R, (7.93) o 716
(7.92) into (7.93): v, =—(i+0,R,i)R, (7.94)
Ruo =¥ and R, ="i’i"° (7.95)
(7.92) and (7.94) in (7.95):
R =R+ R +0,R R, (7.96)
18
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Emitter-Follower (Cont’d)

Why R,<<r, results in Ry=R,,?

The negative plates of Cu and Cx are tied together. So if we have their
positive plates tied too then Cu will be in parallel with Cx having identical
driving-point resistance (i.e. Rx0=Rp0).

C X
|

+1_
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Emitter-Follower (Cont’d)

It is obvious at least in DC that if R,<<r,, then:

Vg r

— T zl

Ve M+G|

<r,

So the approximation R,<<r, leads to R,,=~R,!
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Zero-Value Time-Constant Analysis (EX.)

R,o can be calculated in a similar fashion. It is obvious that

Ro=R, if f<r,

C, can be lumped in with C,, if r, is small:

Zero-Value Time-Constant Analysis (EXx.)

This is the same as what obtained in (7.24) & (7.25) by exact analysis;
Rin (7.25) is equal to R 4 in (7.98).

Zero-value time constant gives the result with .

However it does not give any information on the non-dominant
poles!

1
Ogpg =—————— 7.97
8 R L R.C, (7.97)
1
D8 = R (7.98)
Reg {c,, +C, [0+ ngL)+RL]}
70
2
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Zero-value time constant
Emitter-Follower
Now see zero-value time constant approach for emitter-follower of Fig.
7.9 where only C,, has been included. R, can be calculated by inserting
a current source i:
o 5 ;
T
i v GnVs
+
Reg v,
Fig. 7.17
23
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H 1)
Emitter-Follower (Cont’d)
:£+\;§+7% (7.99)
r +1,
oo :l:ﬁJeri +RRE Gygv, i)
Y ivgv =t (7.100) o Bth RAh L
r/r RE
3|:ﬁ . 1+9,Re DR,,o—ﬁ 2l R, +1, +Re (7.101)
r. Ry +1, +Re i 1+9,Re
24
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[

RE

ViV, oV 1 1 Re 1
LIz | ——+—+ g, +
Ry+1, 1, Ry+r, . Ro+r, r.

v = gmvl+%=[gm +i]‘/1 =%V1

Zero-Value Time-Constant Analysis

Emitter follower (Cont'd):
For C, we have:

o

I
M— D c,

A\ I

r T

T
R v ) gnvs
= Rsp Ri¢ =
R ‘
ReZ v,

£

r, r

T

Ry = :[(RS )l ||[%.’—”Ml+%(l+gmn)}
E

z

Zero-Value Time-Constant Analysis

for g,r.>1

R +1,

R,uO :{(Rs + rh)” I ” ngE }(1+ ngE)

z{I:(Rs +rb)|| rn](1+ ngE)} ”(Rs +rb)

Note:

1- For a large Rg (output resistance of a preceding CE stage)
& a small resistive R : (Ry+n)llr, ~r,

=R, ~r (1+9,Re)I(Rs +1,)

2- For a large Rg and a large R (like a current source), then:

R =1 (1+9,R) (R +1,) = (9. R )N (Rg + 1, ) (Rg + 1)
Note: higher Rg results in a lower R, (time-constant), so a higher BW!
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1+ gaf, *
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H 7
Emitter-Follower (Cont’d)
Thus:
O = ! (7.102)
3B T 5 ~ D ~ '
R.C. +R,C,
Interesting to note that performing the KCL Nodal Analysis while
ignoring C, results in:
1
@ 445 = @ (7.41)
27
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Emitter-Follower (Cont’d)

Which one is the dominant pole? (7.102) is not in agreement with
(7.41) obtained by KCL analysis ignoring C,, (to be obtained by
students!). Zero-value time constant tells us nothing about the
dominant zero showed in the nodal analysis (ignoring C,):

— —On
C

T

Z R =0

rL+R
where R =r ||—2—F

plz_CIrRl 1+ngE

Because of the dominant zero in the results obtained by the nodal
analysis, the pole frequency obtained there in (7.41) can not the -3dB
frequency.

If there is a major capacitance between input and output such as C,,
(in source follower) zero-value time constant can not predict w_;dB
(BW) very well!
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Emitter-Follower (Cont'd)

Example:
Calculate poles & zero by different analyses: C”=1 pF, C =10pF, R.=2kQ, R=50Q, r,=150Q,
p=100, I.=1mA.

Solution:

p, = 27(568.2MHz)
z, = f; =612MHz

1. Nodal Analysis (ignoring C”):
In reality, not ignoring C”, there are
two poles such that the above p; is the 2" pole

Zero-Value Time Constant Analysis: 1

To be checked by Students! p, =
Also No ideas about zera or 21 Pole ' 60Q(LOpF) + 148Q(1pF)
=27(212.8MHz)

N
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Zero-value time constant;
Cascaded Common-Emitter Freq. Response

Zero-value time constant is advantageous for circuits with more than one
device:

Fig.7.18: Single-ended or a differential half circuit
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Example:
Cascaded Common-Emitter Freq. Response

Find w_345 of Fig.7.18 With:

Cascaded Common-Emitter Freq. Response

Small signal:

R ot Ca oo C.

R, =10k Q L, =1, =400Q r,=20kQ C,.=5pF
C,,=10pF C,=C,,=1pF R, =10k Q C,, =C,,=2pF
r,=10kQ R.,=5kQ gm =3MAN On, =6MAN
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T

J_" i J_ W J_+H

L) C,,I v, gnVs Ruy CCSI 2 CHI Vs GnVa Rez %C
Fig. 7.19
For C,; and C,, Eqn. 7.96 can be applied:
Ry e
CﬂlRyol = CﬂlR”01(1+ Omi Rz + R ) (7.103)
701
Ry o
CyZR,UOZ =C;12R7!02(1+ ngRLZeﬁ‘ + R ) (7-104)

702
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Cascaded Common-Emitter Freq. Response

Where:

Rigr =R (R, +1,,)=5.1kQ

RLZE" = RLz =5k Q

R0 = [l (1 +Ry;) =20k Q| (10.4k Q) = 6.84k Q
R.1=r.ll(h,+R,) where: R, =R, =10kQ
R, =10k Q] (10.4k Q) =5.1k Q

And for C4, C,»:

C.R,q =5%6.84ns =34.2n sec

C,,R,0, =10x5.1ns =51n sec

This substituting in (7.103) and (7.104):

C 4R, =1x6.84(1+3x 5.1+%)ns =116.6nsec

C 2R, =1x5.1(1+ 6x5+%)ns =163.2n sec

Cascaded Common-Emitter Freq. Response

For C_, C,

cs1r oot

CoiReor =CiRier =2%5.1nsec =10.2n sec
CoRe02 =C R e =2x5nsec =10n sec

» Assuming the circuit has a dominant pole, the -3dB freq.
can be estimated as

1 10°
3T, 342+51+116.6+136.2+10.2+10

@ 345 =

rad /sec

9

10 rad /sec =2.6x10°rad /sec
385.2

= 4 =413kHz

34
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Cascaded Common-Emitter Freq. Response
A computer simulation gave:
Fpr =-463kHz f,, = -478MHz
fp, =—4.37TMHz f,, =—955MHz
f,; =—41.06MHz
f,,=-212MHz
= f 4 =—456KHz  only 10% error
35
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