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Electronic III

Bipolar Transistor Models
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Simplified Bipolar Operation 
• When the emitter junction is forward biased, it conducts. It consist of majority 

carriers from emitter (electrons here) and majority carriers from base (holes 
here).

• Since emitter is much more heavily doped than base, injected electrons from 
emitter are many more.

• Assuming collector voltage is high (collector-base is reversed biased) no holes 
from the base will go to the collector.

• However electrons that travel from the emitter to the base, where they are now 
minority carriers diffuse away from the base-emitter junction due to the minority 
carriers concentration gradient in base.     

Electrons

Holes
n+ p n- n+

baseemitter collector

Fig.2.1
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Simplified Bipolar Operation

Any of these electrons that get close to collector-base junction will immediately 
be “whisked” across the junction due to the large positive voltage on the 
collector, which attracts electrons.

In a properly designed vertical bipolar, the vertical base width W (next page 
figure) is small, so almost all of electrons that diffuse from the emitter to base 
reach collector-base junction and are swept across junction.

So the collector current very closely equals the electron current flowing from the 
emitter to base.

The much smaller base current very closely equals the current due to the holes 
that flow from base to emitter. 
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Simplified Bipolar Operation
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Fig.2.2.The vertical npn bipolar transistor in IC  
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The Hybrid-π small signal model

Fig.2.3.The hybrid-π model of bipolar transistor 

Omid Shoaei, Univ. of Tehran
6

The Hybrid-π small signal model
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is the integrated charge (per cm2 emitter area) in the base.

is base doping concentration (m-3).

is the base width (m).

is the EB area (m2).

is the diffusion constant for electrons (m2/sec). It is related to mobility by 
Einstein’s relation, given by:                       . 
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The Hybrid-π small signal model

• Tranconductance gm
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The Hybrid-π small signal model

Input Resistance rπ
The ratio of the AC VBE and the AC IB is 
the AC input resistance. It is called rπ as 
follows: 

Its relationship with β and gm is depicted 
in figure.
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The Hybrid-π small signal model

Output Resistance ro

ro is the ratio of the AC VCE to the AC IC:
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Increasing –VBC by – ΔVBC increases the width of the depletion layer as shown in next 

figure. The depletion layer charge increases by ΔQB.

So less QB is left (the base charge is decreased by the same amount ΔQB.
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The Hybrid-π small signal model

Also the variation of the depletion layer charge ΔQB is linked to the depletion 
capacitance CjC (in F/cm2) as:

The second term in                                              is derived from:  

Fig.2.5. Relation between ΔQB and ΔVBC through CjC
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The Hybrid-π small signal model
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Defining Early voltage as:
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Represented by Cμ in the hybrid-π model
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The Hybrid-π small signal model

• Small-Signal Voltage Gain Av
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The Hybrid-π small signal model

Capacitances

Where Cj is the depletion capacitance of the base-emitter junction. For forward 
biased junction:
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Diffusion Capacitance CD

A variation in base-emitter voltage ΔvBE causes a variation in injected charge ΔQF.

QF, the dynamic charge is not same as QB. QF, the total integrated charge in the base depends 
on the forward bias VBE, where QB is the charge that is physically present in the base. They don’t 
have same dimension either. QB, number of carrier per cm2, QF, total charge in coulombs. 
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The Hybrid-π small signal model

This is the charge of minority carriers in base (electrons in npn). This variation 
causes a variation in majority carriers charge in collector (as explained in BJT 
operation).

ΔQF/ΔvBE has the dimension of capacitance and is called the diffusion capacitance.         
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Base Transit Time τF

We can write the current in BJT as follows:

The more injected minority charge into base, the more current to collector. 

The faster injected charge reach collector (smaller τF ), the higher collector 

current is.

As it will be seen:             , νsat is the saturation velocity.          
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B
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The Hybrid-π small signal model

This leads to the physical interpretation that τF is the average time in which the 
electrons diffuse through the base from the emitter side to the collector side.

It is a measure of the max. frequency:

So physically CD is directly proportional with WB
2 (width of base region squared) 

and the collector current, μn and kT/q are constant. 
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The Hybrid-π small signal model

The diffusion capacitance is much larger than the base-emitter junction 
capacitance. It increases exponentially with VBE, whereas CjEt increases only with 
the square root of VBE.
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The Hybrid-π small signal model

Collector Junction Capacitance Cμ

Cμ models the depletion capacitance of the collector-base junction (normally in 
reverse bias). Since this is a graded junction:

Where AC is the effective area of the collector-base interface. 
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Small Signal Model for Forward-Biased Diode
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The Hybrid-π small signal model

Base Resistance rB

The active region of the bipolar transistor is located directly underneath the 
emitter. The base region is contacted by means of ohmic regions that add series 
resistance as well as additional capacitance.

For example, a series base resistance rB is present between the base contact 
metal and the active base. It is the most important parasitic series resistance and 
is included in the hybrid-π model.   
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Fig.2.7
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A Simple High-Freq. Model for CE with Current Drive 

In first example we want to realize a 
current-gain amplifier. For this 
purpose a BJT amplifier, which has a 
large input source resistance RS.

The AC signal is amplified, then is 
short circuited by a large cap. C∞ to 
ground, through which we can measure 
iOut . 

Fig.2.8-a

Fig.2.8-b
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A Simple High-Freq. Model for CE with Voltage Drive 

In 2nd example we want to realize a 
voltage-to-current amplifier. For this 
purpose a BJT amplifier, which has a 
small input source resistance RS.

The AC signal is amplified, then is 
short circuited by a large cap. C∞ to 
ground, through which we can measure 
iOut . 

Fig.2.8-a

Fig.2.9
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A Simple High-Freq. Model for CE with Current Drive

Since output is short-circuited ro can be left out. A current iC= iOut flows in the 

output short circuit.

RS >> rπ + rB therefore the transistor is current driven. Its input current is 

approximately iin = vin /RS .

RS = ∞, so from Fig.2.8-b one could say since the input impedance of device is 

very small compared to RS so the input current is almost equal to vin / RS . 

Fig.2.8-c
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A Simple High-Freq. Model for CE with Current Drive

A common indicator for the speed of a BJT is the frequency at which the transistor 
current gain drops to unity, when the collector is connected to a small-signal 
ground: fT = Unity-Gain Frequency

So for RS >> rπ + rB :
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       and
This is true for 
the frequencies 

near  fT if:
fT << gm / Cμ
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A Simple High-Freq. Model for CE with Current Drive
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A Simple High-Freq. Model for CE with Current Drive
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A Simple High-Freq. Model for CE with Current Drive

fT is reached to its max. value at medium and high currents. The transition 
current at which this occurs is denoted by ICfT : 

Finally, fT is specified for a bipolar transistor with a short-circuited  (for AC signal) 
collector. If an ohmic series resistance rC is present, the output can be shorted 
but there is still some collector resistance that remains.  
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A Simple High-Freq. Model for CE with Current Drive

Example:
Calculate fβ and fT for IC=0.01 mA, 0.1 mA & 1 mA ?

If rC=30 Ω, what is the fTmax ?

What is the value of transition current (ICfT) ?

Solution:

for

MHz6.10

1025.15
mA010

mV2510)15(1025.0
π2

mA01.0

/)(
π2
1

9129

=

×=××++×=⇒=

++=

−−−

T

T
C

C
jEtF

T

f
.f

I

I
qkTCC

f

 
1

μτ

pF 1, pF 5, ns25.0,100 ==== μτβ CC jEtF

MHz636
1025.0π2

1
π2
1

MHz393mA1
MHz88mA1.0

9max  =
××

==

=⇒=
=⇒=

−
F

T

TC

TC

f

fI
fI

τ

Omid Shoaei, Univ. of Tehran
28

A Simple High-Freq. Model for CE with Current Drive

Addition of rC
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A Simple High-Freq. Model for CE with Current Drive
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A Simple High-Freq. Model for CE with Current Drive

So we can ignore the s2 term compared s 
term in dominant as well as 
rC Cμ s  term in numerator: 
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CE Configuration with Voltage Drive

Tranconductance AG = iout /vin

The configuration is the same as below figure but RS is much smaller than rπ . The 
small-signal model is shown below (for zero RS).

Low-Frequency:
Neglect all capacitances.

m
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Fig.2.12-a Fig.2.12-b
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CE Configuration with Voltage Drive

High-Frequency
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CE Configuration with Voltage Drive

Unity-gain frequency for AG (Tranconductance) is meaningless, i.e. we are not 
interested to know where gm=1 A/V!! 
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CE Configuration with Voltage Drive
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CE Configuration with Voltage Drive
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Note: Can be modified as follows too (by adding collector resistor related time 
constant):
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CE Configuration with Voltage Drive
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CE Configuration with Voltage Drive

This maximum depends only the base resistance and both collector and emitter 

junction capacitances, and as can be noted it is independent of the base transit 

time τF!

In general, it can be verified that only rB limits the high frequency performance of 

bipolar junction transistor. For rB=0 infinite BW can be achieved!!! 
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CE Configuration with Voltage Drive

Example:

max

Calculate , ,  for 0.01 , 0.1 , 1 ?
 if 30 ?

100, 0.25 , 6 , 100

from  previous  example:  10 , 88 , 393   respectively for  
0.01 , 0.1 , 1  .
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f f I I
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C C r
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100 ( 6 10 ) 30 1 10 630 10 sec

1
2
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1 252.6

2

C

C f T
B

B C C f T

B C

B
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r C

I
f

I I

f I

f

μ

τ

τ

− − −+ = × + × × = ×

⇒ =
+
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π

MHz MHz MHz mA mA mA
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π
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CE Configuration with Voltage Drive

12

0.6 10.6 126.3
1.2 2 630 10

The frequency  that  the    reduce to one half of its DC value
/ 25 0.25

100
The current  that the 

0.6 1( 0.25 )
0.25 0.6 2 6

C C f T B
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C B T
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f
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r
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30 10− ≈
×
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Conclusion 

fβ, fT and fB are the most important “frequency” parameters of a bipolar junction 

transistor (BJT). They all depend on the parameters shown in Fig.2.6: 

 and  are determined by technology.
 can be varied by varying the current .

 can be varied only by taking different (larger) layouts.

F

m C

B

g I
r

β τ

β

mg

Fτ

Br

πr

πC βf

Tf

Bf

Fig.2.4

i.e.  , , ,   and  Junction capacitances , .m F B jE tg r C Cμβ τ
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CC and CB Configurations

CC: two bias sources: 1- bias voltage at base

2- emitter current source

low-frequency

IE with 1/β margin error is equal to IC. Having a fixed IC requires a constant VBE , 
so only a DC shift from base to emitter and vOut = vin and ZIN = ∞ .

Fig.2.15-a Fig.2.15-b

Omid Shoaei, Univ. of Tehran
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CC and CB Configurations

follower source i.e.

 MOSTFor   :Note

:have we  for  

:low to high from converted is Impedance

mombm
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)292(
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++

=

+
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=

β

β

β
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CC and CB Configurations

High-Frequency
At high frequencies caps have to be taken into accounts:

( 1 ) ( ) 0
1( 2 ) ( ) ( ) ( ) 0  where  

(2)    ( ) ( )

( )
into (1)
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BE BE x
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s C g
v v
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π π

π π μ

π μ π μ

μ

π π μ

+ + + =

+ + + + = =
+

⎡ ⎤→ + + + = − +⎣ ⎦
− +

⇒ = →
+ + +

Fig.2.16
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CC and CB Configurations
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CC and CB Configurations
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CC and CB Configurations

1.0 1 10 100 1000 MHz f

Ω10

OUTZ

1mA25.0 == BmCTB rgI
Ω100

Ωk1

Ωk10

mA5.2

A25 μ

A5.2 μ=CI

inductive

resistive

capacitive

1.0 1 10 100 1000 MHz f

1.0

01.0

10

1

mA

CI

TfBf

mA62.0=CfTI

mA25.0=CTBI

Fig.2.17.
Position of pole and zero & bode diagram of ZOUT of
emitter follower for β =100, rB = 100 Ω, τF = 0.25 ns
,CjEt + Cμ= 6 pF.
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CC and CB Configurations
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CC and CB Configurations

In previous figure, the asymptotic values of fB and fT are plotted versus IC. This 

plot gives the positions of the zero and the pole with IC as so is called pole-zero 

position plot.

@ ICTB, gm rB = 1 : fT = fB so a pure resistance results, i.e. rB.

At lower IC, fT (pole) < fB (zero) so the output impedance rolls off vs. frequency 

(capacitive).

At higher IC, fB < fT. so there is a region in which output impedance increases with 

frequency. This region is called an inductive region. 

This inductance could cause instability if combined with parasitic cap. at output 

terminal, so it is safer to reduce the biasing current.
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CC and CB Configurations

Note previous results obtained for 

However, for (perhaps more practical case)

S B Z BR r r f fπ<< << ⇒ ≈

1 2

1
2 ( )

                                       moves to a lower frequency

 unchanged; and   

                                       moves to a higher frequency
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r r R f f
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C
f f f R C

g

π β
π π μ
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μ

<< << ⇒ ≈ =
+

= = ≈

π
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CB Configurations

The input impedance of CB is exactly 
the same as the output impedance of 
the Emitter-Follower. So the same 
pole-zero position plot can used for CB 
input impedance.

Particularly the previous assumption 
for the source impedance could be 
more practical: S B Z BR r r f fπ<< << ⇒ ≈
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Comparison between MOSTs and Bipolar transistors

Maximum Frequency of Operation:

fT is assumed as the parameter (unity-gain of amplifier can be discussed too!).

from bipolar:

for MOST, it can be shown that: 

τF (transit time) for bipolar is likely to be smaller for a bipolar transistor than for a 

MOST because the vertical WB is easier to make smaller than the lateral Leff . [for 

0.1 μm, this time constant is about 1 ps <=> fT≈160 GHz] 

sat
max π2

1
v
Wf B

F
F

T == τ
τ

  where

satv
Leff

F =τ
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Comparison between MOSTs and Bipolar transistors

When saturation velocity and so the drain saturation current happens well before 
pinch-off! 

)332(
π2

1
π2

1
π2

1

)322(

)312()(

satsatsat,
max

satsat,

satsat

−=≈=

−=⇒

−−==

effoxeff

ox

GS

m
T

oxm

THGSoxdD

L
v

CLW
vCW

C
g

f

vCWg

VVCWvQvI

MOST

Bipolar

Tf

MBI

BW
vsat

π2
1

effL
vsat

π2
1

I Fig.2.18



14

Omid Shoaei, Univ. of Tehran
53

Comparison between MOSTs and Bipolar transistors

In long-channel since the quadratic relations already exist:    

In short-channel considering short-channel effects (i.e. mobility degradation

As shown in the Fig.2.18 increasing I beyond some point makes fT saturated. This 
can be somehow explained by equations 2-32 & 2-35. Increasing ID is done by 
increasing (VGS-VTH). For very large ID and so (VGS-VTH) if θ(VGS-VTH)>>1 then 2-
35 becomes:
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Comparison between MOSTs and Bipolar transistors
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Fig.2.19
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Comparison between MOSTs and Bipolar transistors

Tranconductance-Current Ratio:

Bipolar offers a better current drive capability. Less input voltage is required to 
drive a larger output current! 
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