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Chapter 5: Frequency Response 
 
 
5.1 Nodal Analysis 
 
  
 
 
 
 
 
 
 
 

Fig. 5.1:   ECL pair with passive load 
 
Differential mode (Half circuit) 
 
 
 
 
 
 
 
 
 

Fig. 5.2:   Half circuit and SS model 
 

Cµ = Cjc 
 

Cπ = Cje + Cb = Cje + gmτF 
 
Assumptions:  Neglect  rµ,  ro,  Ccs 
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Solving for vo/vi: 
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Neglect z1 = gm/Cµ >> ωT = gm/(Cπ + Cµ) ; 
 
 Typically, Cπ >> Cµ 
 
 Coefficient a = CµRL + CµRT + CπRT + gmRLRTCµ   where RT = (RS + rb)||rπ 
 
 Coefficient b = RLRTCµCπ 
 
Denominator = 1 + as + bs2 
 









−±−=

−±−
= 2

2

21
4

11
22

4
,

a
b

b
a

b
baa

pp  

 
For practical circuits, b/a2 << 1 
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So |p2| >> |p1|   where (|p2| >  ωT) 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3:   Location of poles p1, p2 
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Example: 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.4:  ECL pair with passive load - example 
 

Cµ = Cjc = 0.5 pF 
 

Cπ = Cje + gmτF = 2 pF + (1/52)0.5 ns ~ 12 pF 
 

rπ = β/gm = 100 (52) = 5.2 kΩ 
 

p1 = 1/a = 11 x 106 r/s ~ 2 MHz 
 

p2 ~ a/b = 2 x 109 r/s ~ 300 MHz 
 

z = gm/Cµ = 40 x 109 r/s = 6 GHz 
 

vod/vid = −gmRL(rπ / (rπ + RS)) = 160 = 44 dB 
 

 
 
 
 
 
 
 
 
 
 

Fig. 5.5:  Approximate Bode Plot  
 

• So there are 2 poles and 1 zero where p2 >> p1 and z1 >> p1 
 
• Here p1 predicts the frequency response until f = p2. 
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5.2 Analysis of CE amplifier using Miller approximation 
 
  
 
 
 
 
 
 
 
 

Fig. 5.6:   General Technique 
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An exact answer can be obtained if A = A(s) is known. 
 
Miller Approximation: 
 
Since we do not know A(s), we can use A = A (s = 0) as a way to predict the first pole 
because A(s) is quite close to A(0).  However, results for the second pole may be quite 
inaccurate. 
 
Applying the Miller Approximation to CE analysis: 
 
 
 
 
 
 
 
 
 

Fig. 5.7:   SS circuit for CE amplifier 
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Since input and output loop are not independent, analysis is a bit tricky.  With Miller 
approximation, we can split Cµ 
 
 
 
 
 
 
 
 
 
 

Fig. 5.8:   SS circuits for CE amplifier – Miller Approx. 
 
Miller Approximation:  Use A ~ Adc = −gmRL 
 
So then, from the left half of the circuit,  the first pole can be estimated, 
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Compared to the first pole obtained by nodal analysis in the previous section,  
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The second pole, however, is quite inaccurate in the Miller approximation, 
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p2 = 30 MHz in example compared to 300 MHz from the exact analysis 

 
There is no zero provided by the Miller approximation. 
 
The Gain Bandwidth (GBW) product then,  
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Note that the GBW is independent of RL = RC which indicates the tradeoff between gain 
and BW.  Maximum GBW achieved for minimum values of RS, rb, and Cµ 
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5.3 Frequency Response of multistage amplifiers 
  
 
If we assume no dominant zeroes: 
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where n = number of an independent energy storage element 
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If we compare the co-efficients of the above two equations, 
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since, in most practical multistage integrated circuits, there is one dominant pole. 
 
 
 
 
 
 
 

Fig. 5.20:   Pole location in multi-stage amplifiers 
 
If the dominant pole is on the negative real axis, 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.21:   Bode plot showing effect of dominant pole 
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We need to find b1/b0! 
 
Here, we introduce zero value time constant analysis that gives b0 and b1 exactly even for 
complicated networks 
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Consider an example of the CE amplifier using ZVTC analysis, 
 
 
 
 
 
 
 
 

 
Fig. 5.23:   CE amplifier circuit 

 
 
 
 
 
 
 
 
 

 
Fig. 5.24:   CE amplifier SS circuit 

Start by open circuiting capacitors and turning off independent sources, 
 
RπEQ 
 
 
 
 
 
 
 

 
RπEQ = (RS+rb)||rπ 
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Fig. 5.25:  SS cct to extract equivalent resistance for Cπ 

 
RµEQ 
 
 
 
 
 
 
 

 
 

Fig. 5.26:  SS cct to extract equivalent resistance for Cµ 
 
Node 1:  

vπ = it RπEQ 
 
Node 2:  
 

it + gm it RπEQ + (it RπEQ – vt)/RL = 0 
 

RµEQ = vt/it =  RπEQ + (1 + gmRπEQ)RL 
 

RµEQ = RπEQ (1 + gm RL) + RL 
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If RS = 10 kΩ, RL = 10 kΩ, Ic = 100 µA, Cje = 1 pF, Cjc = 0.5 pF, τF = 0.5ns, β  = 100  
 
gm = 1/260Ω; rπ = 26kΩ; Cπ = 1 pF + gmτF = 3 pF;  ω-3dB = (22 ns + 150 ns)-1 ~ 6 MHz  
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5.3.1 Limitations of ZVTC analysis 
  
 

• Does not predict zeroes or work with dominant zeroes 
 
Example: emitter follower  
 
• Does not work with complex poles 

 
 
 
 
 
 
 
 
 

 
 

Fig. 5.27:  Bode plots 
 

 
• When there isn’t one dominant pole, the predicted ω-3dB is less accurate. 

 
For example, in a cascade of identical amplifier stages, 
 
  
 
 
 
 
 
 

 
 

Fig. 5.28:  Cascaded amplifiers 
 
Here,  
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when ω = ω-3dB   ,  
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n ω-3dB (exact) ω-3dB (ZVTC) % error 
1 p1 p1 0 
2 0.64 p1 0.5 p1 22 
3 0.51 p1 0.33 p1 35 

 
Fig. 5.29:  Comparison of ZVTC and exact analysis for more than one dominant pole 

 
 
 

5.4 Frequency response of the 741 OPAMP 
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Fig. 5.30:  Simplified 741 opamp schematic for frequency response calculations 
 
Look for the node with the highest resistance and capacitance!  For 741, an internal 
compensating capacitor of 30 pF has been added so this part is easy. 
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Consider the output of stage 1: 
 
   R1 = Ro1||Ri2 = 6.8 MΩ || 5.5 MΩ = 3 MΩ 
 
Consider the output of stage 2: 
 
   R2 = Ro2||Ri3 = 83 kΩ || 9.0 MΩ = 82 kΩ 
 
 
 
  
 
 
 
 
 

 
 

Fig. 5.31:  Second stage of 741 opamp 
 
Gm  = 1/147Ω;  
 
REQ = R1 + R2 + GmR1R2 = 3 MΩ + 82 kΩ + (1/147)(3M)(82k) ~ 1.7 x 109 Ω 
 
Therefore, f-3dB ~ (2πREQCcomp)-1 ~ 3.1 Hz  (in reality, if SPICE simulations are 
performed, you will calculate this value to be around 5 Hz)  
 
Using the Miller method since Ccomp is a series capacitor, 
 
CM = (1 + GmR2)Ccomp = (1 + (1/147)82k)(30pF) ~ 16,765 pF 
 
Therefore, f-3dB ~ (2πR1Ccomp)-1 ~ 3.2 Hz   
 

• There are the other non-dominant poles namely the Q23 PNP emitter follower, 
active load and the PNP level shifter (Q2, Q4) 

 
• Adding the internal compensating capacitor had the beneficial effect of moving 

the dominant pole far away from the other poles so one gets a stable, well-defined 
gain function.   

 
• However, this comes at a loss in gain at higher frequencies since the pole 

introduces a -20 dB/decade slope in the gain function at the very low frequency of 
5 Hz. 

 
 
 


