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Electronic III

The Stability Problem 
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The Stability Problem

Source A Load
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Fig. 4.1

A(s) is the open-loop transfer function. β the feedback factor is normally 
resistive, but this need not be always the case, so generally β(s) is the 
feedback transfer function.

For physical frequency s = jω then 
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The Stability Problem

Loop-gain is a complex number represented by its magnitude and phase:

The manner in which the loop-gain varies with freq. determines the 
stability or instability of the feedback amplifier.

Consider the freq. at which φ(ω) becomes 180˚. At this frequency, ω180 , 

the loop gain A(jω) β(jω) is negative real number, so at this freq. feedback 

becomes positive.

If at ω180 the magnitude of the loop gain is unity, Af (jω) will be infinite, i.e. 

the amplifier has an output for zero input; this is by definition an oscillator.

Consider Fig. 4.1, with xs set to zero, any disturbance in the circuit, such 

as turning on the power supply, will generate a signal xi (s) at the input of 

the amplifier. This signal usually contains a wide range of frequencies, 

including a component at ω = ω180 , that is xi sin(ω180 t), so:
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The Stability Problem

xf is further multiplied by -1 in summer, so the feedback causes the signal 

xi to be sustained. We started from xi sin(ω180 t) and resulted to the same 

xi sin(ω180 t) at the same point so the amplifier is said to oscillate at the

freq. ω180 .

For the case where the magnitude of the loop is greater than unity:

the circuit will oscillate and oscillation grows in amplitude until some 

nonlinearity (always present in circuit) reduces the magnitude of the loop 

gain to exactly unity, at which sustained oscillation will be obtained.

for A(jω) β(jω) = -2 for example if we start from xi sin(ω180 t) around the 

loop we get -2 xi, so after summer we obtain 2 xi. After one more iteration

4 xi will be produced. Traveling more around the loop will grow the signal 

further 8 xi , 16 xi , …

Our objective here is to prevent this oscillation!!!
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The Stability Problem
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The Nyquist Plot

It is a formalized approach for testing 
the stability based on the above 
discussion. It is a polar plot of the loop 
gain with freq. used as a parameter.

For transfer function like

in which β is assumed positive (i.e. 
negative feedback with negative sign as 
shown in fig. 4.1).

For positive frequencies (+ω), the 
phase of the loop gain will be negative 
as shown by solid-line in fig. 4.2.     
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The Nyquist Plot

Note that the radial distance is |Aβ| and the angle is φ. The solid-line is for 

positive frequencies. Since the gain function of any physical network has a 

magnitude that is even function of freq. and a phase that is odd, the Aβ

plot for negative freq. is mirror image through the Re-axis.

ω180 is the intersect point of Nyquist plot and Re-axis. If this happens to 

the left of (-1,0), so the magnitude of loop gain is greater than unity and 

amplifier will  be unstable. But if  the intersection happens to the right of 

(-1,0), the amplifier will be stable. 

If the Nyquist plot encircles (-1,0) the amplifier will be unstable. The same 

as saying that the magnitude of loop gain is greater than unity @ 

intersection point.     
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The Nyquist Plot

Example:

Solution:

The feedback amp. will be stable if @ ω180 , |Aβ|<1. @ the boundary 
β=βcr :
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Stability and Pole Location

An amplifier with a pole pair at 
s= σ±jωn can have a response to 
a disturbance as follows:

Depending upon the position of 
complex-pole pair shown in 
Fig.4.3 we could have damped 
oscillation (stable) sustained or 
growing oscillation (unstable) 
system.
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Stability and Pole Location

Poles of feedback amp.
They can be obtained from equation (4-1):

Which is called the characteristic equation.

We will see how the feedback affects the amplifier poles. We will assume 
that the open-loop amplifier has real poles and no finite zeros (all zeros are
at s=∞). For simplification here we assume β is independent of frequency 
too.
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Stability and Pole Location

Single pole amp:

So the feedback moves the pole along negative real axis to a freq. ωpf :
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Stability and Pole Location

Note in the Bode plots although at low freq. while the difference between 

the two plots is 20 log(1+A0 β), the two curves coincide at high freq. from 

(4-9) for frequencies ω >> ωp(1+A0 β) : 

Physically speaking, the loop gain is much smaller than unity at such high 

freq. and the feedback is ineffective.

This amp is unconditionally stable. Since the closed-loop pole never enters 

RHP of s-plane for any β. The phase lag of a single-pole amplifier can be 

never greater than 90˚ so never achieving 180˚ phase shift required for 

the feedback to become positive!
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Stability and Pole Location

The Nyquist plot for this system is:
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Stability and Pole Location

Amp. with two-pole response:

Consider a system with two real poles:

closed-loop poles are obtained from 1+A(s) β=0:

So as loop gain A0 β is increased from zero, the poles are brought closer 
together. Then a value of loop gain is further increased, the poles 
become complex conjugate and move along a vertical line. This plot i.e. 
root-Locus diagram is shown in Fig.4.6 . 
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Stability and Pole Location

From the root-locus diagram of 
Fig.4.6 we see that this feedback 
amp also is unconditionally 
stable.

The max. phase shift of A(s) in 
this case is 180˚ (90˚ per pole). 
But this value is retuned at ω=∞. 
Thus there is no freq. at which 
the phase shift reaches 180˚!

Although the open-loop amp A(s) 
may have a dominant pole. This 
is not necessarily the case for the 
closed-loop amp.

Once the poles of closed-loop are 
known, its response can be 
plotted.
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Stability and Pole Location
The characteristic equation of 
a second-order network can 
be written:

Where ω0 is pole frequency 
and Q is pole Q factor.
The poles are complex if 
Q>0.5. (starting of bringing 
overshoot in time step 
response)
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A geometric interpretation for ω0 and Q of a pair of complex-conjugate 
poles is given in Fig.4.7. ω0 is the radial distance of the poles and Q
indicates the distance of the poles from jω-axis (poles on jω-axis have 
Q=∞). Comparing (4-13) & (4-15):
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Stability and Pole Location

For Q ≤ 0.707 = √2/2 the freq. response of the feedback amp. shows no 
peaking. For Q = 0.707 (poles at 45˚ angle) results in maximally flat freq. 
response. 

Fig. 4.8.
Shows the feedback amp response 
for difference Q or various values of
A0β.
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Stability and Pole Location
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Example:

Consider positive feedback circuit 
in Fig.4.9. Sketch its root-locus 
diagram vs. k.

Solution:

To obtain the loop transfer 
function, signal-source is short 
circuited and loop is broken at 
amplifier input, we then apply a 
test voltage vt and find the 
returned voltage vr (which was 
connected to the amp input 
before breaking the loop)!  
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Stability and Pole Location

T(s) is the two-part RC network inside the broken-line box:

Characteristic equation: 1- L(s)=0 (4-21)

Comparing to standard form (4-15): 
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Stability and Pole Location

For k=0 Q=1/3  ⇒ poles on negative real axis!

As k increased poles get closer and coincide at Q=0.5 & k=1. further 
increasing k makes complex poles but since ω0 remains constant 
independent of k, the root locus is then a circle:  
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Stability and Pole Location

For Q=0.707 maximally flat response is obtained ⇒ (for k=1.856) which 
poles are at 45˚ angle.

Q=∞ happens when poles cross jω-axis (for k=3).

Thus for k ≥ 3 this circuit becomes unstable.

Note: we said a feedback amp with second-order response is unconditionally 

stable. This circuit, however, is different from negative-feedback. Here we 

have a positive gain k and a feedback with transfer function T(s). The 

circuit oscillate at frequencies for which phase of T(jω) is zero. 
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Stability and Pole Location
A Better approach to find Loop Gain:

Insert a voltage source Vx inside the loop 
ad find Vz/Vd; The Loop Gain L(s), Closed 
Loop Gain Af(s) … are obtained while the 
loading effects are automatically there! 

Fig. 4.11
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Stability and Pole Location

Amplifier with three or more 

poles:

Fig.4.12 shows root-locus for a 

feedback amp whose open-loop has 

three poles.

1+A(s)β=0 (4-25)

Increasing the loop gain A(s)β from 

zero moves the highest-freq. pole 

outward and the two other poles are 

brought closer.

As A(s)β is increased further, two 

poles become complex conjugate. 

For a value of A(s)β the complex 

conjugate poles enter RHP causing 

amp to become unstable.  

Fig. 4.12.
Root-Locus of an amp with three poles. The 
arrows show the pole movement as A0β is 
increased.

1p2p3p
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Stability and Pole Location
Note that an amp with three poles has a phase shift of -270˚ as ω→∞.

So there exists a finite frequency ω180 at which the loop gain has 180˚
phase shift!

Nyquist plot is another way of looking at the loop stability i.e. plotting Aβ
against ω. (Fig. 4.13)

Note that there is one Nyquist plot for each β. Obviously as β is increased 
the  radial distance | Aβ | is increased  so  the  chance  of  encirclement  of 

(-1,0) is increased as well.

For given β: Note for ω=0:

So Aβ|ω=0 is real, ∠Aβ=0 [i.e. Im(Aβ)=0].

As ω increases | Aβ | decreases and ∠Aβ becomes negative so plot is in the 
fourth quadrant.

As ω→∞ ⇒ |Aβ|→0, ∠Aβ→-270˚. So the plot is asymptotic to the origin 
and is tangent to the imaginary axis.

At ω180 frequency, ∠Aβ=-180˚ and the curve crosses the negative real 
axis.  
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Stability and Pole Location
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Stability and Pole Location

There is a A0β value for which the plot passes through (-1,0) point. 

Reducing A0β below that value causes Nyquist plot to shrink and so 

intersect the negative real axis to right of (-1,0) point, indicating stable 

amp. On the other hand increasing A0β above the critical value expands 

the plot, thus encircling (-1,0), indicating unstable performance!

So there is a max β for which the feedback amp becomes unstable.

Alternatively there is a minimum value for the closed-loop gain Af0 below 

which the amp becomes unstable!

To obtain lower values of closed-loop gain one needs therefore to alter the 

loop transfer function L(s)=βA(s).

This is the process known as freq. compensation.
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Stability and Pole Location

Note the lower |Af|≈1/β (for larger A) means that ω-3dB in amp is higher 

and φM will be lower. This will be seen in φM in next section. 
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