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Single-Stage Bipolar Differential Amp. 
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Single-Stage Bipolar Differential Amp.

For simplicity the factor 1/2 is omitted from input and output in small-
signal  equivalent.
The effect of CCS has been neglected (which can be added later).

Miller effect approximation can be used by considering the input
impedance looking across the plane AA (Fig.3.2):

Fig.3.2
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Single-Stage Bipolar Differential Amp.
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The last term in 3-1b is the feedforward current into Cµ.
Neglecting that compared to the first two terms of 3-1b:

(3-4) shows the low frequency impedance seen across the plane AA:    
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Single-Stage Bipolar Differential Amp.

Called Miller capacitance and can be written as:

Where Av1 is the magnitude of voltage gain from the internal base to the 
collector. 

Av1 >> 1, CM >> Cµ

Physical interpretation: a small signal v1 produces a large vo = -Av1v1 of 
opposite polarity. Thus the voltage across CM is (1+Av1)Cµ causing large 
amount of i1 to flow in this cap.!

If we solve problem generally in more general manner:
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Single-Stage Bipolar Differential Amp.

This approximation yields the same previous result for Miller Cap as long as 
Av1 is negative real (i.e. so ∠Av =180˚ as is for low freq. gain when Av = -
gm RL )

If not the impedance is not quite capacitive so a straight CM can not be 
defined!

Note: For ∠Av =0 we see a negative impedance for |Av1| >> 1 

so we don’t use CC (Compensation Capacitor) for a positive high gain 
amplifier:

However for |Av1|<1 for positive Av (i.e. ∠Av =0) a CM=(1-|Av1|)CC which is 
smaller than CC can be defined at input node! 
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Single-Stage Bipolar Differential Amp.
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This model is not good for observing the high-frequency reverse 
transmission or output impedance!!!
Calculating the gain:
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Single-Stage Bipolar Differential Amp.

(3-6) into (3-7): diff.-mode gain

Where k is the low-frequency gain and p1 is the pole:

This analysis shows a single-pole response:
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Single-Stage Bipolar Differential Amp.

The larger Ct, the lower -3dB frequency of the amplifier.

By assuming RS >> rπ and RL small (so that Cπ >> (1+gmRL)Cµ):

Upper limit for |p1|.

Larger RL will give lower |p1|, smaller RS will give larger |p1| but not larger 
than the above upper limit.

Example:

Calculate -3dB frequency of a common emitter bipolar transistor stage?
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Single-Stage Bipolar Differential Amp.

Solution:
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Single-Stage Bipolar Differential Amp.

CM is much greater than Cπ and dominates the frequency response:
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Single-Stage Bipolar Differential Amp.

Fig.3.4. 
small signal equivalent 
of Fig.3.2 using Norton
equivalent

Exact Calculation
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Single-Stage Bipolar Differential Amp.
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Single-Stage Bipolar Differential Amp.
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(3-18) shows a positive zero with magnitude gm /Cµ (at high frequency) 
and two poles:
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Single-Stage Bipolar Differential Amp.

The |p1| from exact calculation is almost ω-3dB obtained from the Miller 

approximation (3-11); The only difference is the last term (i.e. RL/R). 

Miller-effect is like neglecting the high frequency poles.

Non-dominant pole : By comparing the coefficient of s2 in (3-21) with that 

in (3-18) we have: 
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Single-Stage Bipolar Differential Amp.
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Example:
Calculate non-dominant pole for previous example, from (3-24).
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CMOS Common-Source (CS) Freq. Response

Razavi’s Book:
6.2
6.3
6.4
6.5
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CM Response Single-Stage BJT Diff. Amp.

Common-mode gain of diff. pair
RE and CE are the equivalent output 
resistance and capacitance of the 
current source, IEE.

In half circuit impedances common to 
the two devices are doubled (such that 
in parallel result in the actual value) so 
RE and CE become 2RE and CE /2.

Approximate analysis

RE ~ ro (where at low bias ≈ 5 MΩ)

CE ≈ CCS ≈ 2 pF
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CM Response Single-Stage BJT Diff. Amp.

Below this freq. ZE ≈ RE, and above this freq. CE dominates. thus as freq. is 
increased the emitter impedance shows freq. variation well before the rest 
of the circuit.
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CM Response Single-Stage BJT Diff. Amp.
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  Where

So CM gain has a zero              causing CM gain to rise. This is 
undesirable!

CM gain can not increase continuously as other caps become important.

Adm begins to roll of at

Important parameter common-mode rejection ratio (CMRR):   
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CM Response Single-Stage BJT Diff. Amp.

The decrease of CMRR further increases when |Adm| begins to fall with 

frequency.

Thus diff. pairs are far less able to reject CM as the freq. of CM signals 

increases.

On the other hand, according to the equation (3-25), ACM=-RL /ZE and it 

shows the CM gain of both leg of diff. pair (i.e. single-ended). If the 

matching was complete, the output signal wouldn’t have the CM gain. In 

fact, if the output was completely differential, the exact Av is defined by (6-

72) Razavi’s Book equation.

Any way, the main goal is to have a low gain in both leg of differential pair, 

and fortunately in the low frequency that goals become possible, but in the 

high frequency, the node of emitter which is common, practically

connected to ground by the CCS, and the gain of single-ended in any legs 

decreases and their difference decreases, too.
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CM Response Single-Stage BJT Diff. Amp.
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Fig.3.7. Frequency response of:
(a) common-mode gain, (b) differential gain, 
(c) Common Mode Rejection Ratio
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CM Response Single-Stage CMOS Diff. Amp.

Razavi’s Book: Section 6.6
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Diff. Pair with Active Current Mirror

Fig. 6.30 (Razavi), p.189 (last 
paragraph)- p.192
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