
Towards the Development of XML Benchmark for XML Updates

Binh Viet Phan and Eric Pardede
Department of Computer Science and Computer Engineering

La Trobe University, Bundoora VIC 3083, Australia
Email: {vbphan@students, e.pardede@}latrobe.edu.au

Abstract
Many XML Benchmarks have been proposed to study
strengths and weaknesses of any given XML database
system. All existing benchmarks can be applied to
evaluate data retrieval queries, but cannot be used to
evaluate update performance of XML database systems.
Therefore, this paper will propose criteria to evaluate the
abilities to update XML documents of XML database
systems. These criteria will be realized by a data set and
corresponding queries that are applied to benchmark
XML updates. Finally, the competence of the proposal
will be examined by using a case study.

Key Words- XML Benchmark, XML updates,
XQuery, XML Database

1. Introduction

In recent years, there have been various XML

Database Management Systems (DBMS) being proposed
for storing and processing XML data. Each DBMS has
particular characteristics with certain strengths as well as
shortcomings [1]. The lack of standard for XML as data
format also affects the differences in XML DBMS
implementations. This fact has raised needs for tools to
analyze the capabilities of any given XML DBMS. With
these tools, which are also known as benchmark tools,
users can find the most suitable XML DBMS for their
particular business applications.

Hitherto, some XML Benchmarks have been
proposed. These include the Michigan Benchmark [2, 3],
XMark [4, 5], XMach-1 [6, 7] and XOO7 [8,9,10]. These
benchmarks are applied to examine various characteristics
of XML DBMS. Some benchmarks are useful to evaluate
performance of primitive XML query operations such as
the Michigan Benchmark. Others are employed to assess
features of XML query processing or evaluate overall
performances of whole XML DBMS. However, the
existing XML Benchmarks do not focus on benchmarking
update operations, which has become an imperative part
of XML DBMS. Additionally, there are many key aspects
are not covered in these benchmarks such as time for bulk
loading and data parsing, roles of XML schema, and
other storage aspects.

Nowadays, many XML business applications such as
data in e-auction systems, catalogues in many e-

commercial industries, document versioning in academic
or governments require intensive update operations. The
capability of the DBMS to perform efficient updates can
be a crucial factor for users to determine their choice of a
DBMS.

This research will propose a tool that can be useful for
benchmarking XML update operations. This paper firstly
specifies key aspects for benchmarking XML updates.
Based on these aspects, performance metrics, the data set
and the benchmark queries will be developed (see Fig. 1).
The result should be applicable for various XML DBMS
types.

Fig. 1 Frameworks of this research

The remainder of this paper is organized as follows.

Section 2 will discuss background of the research and
existing works. In section 3, criteria for XML update
Benchmark will be proposed. The data set and benchmark
queries will be designed in section 4. The proposal
benchmark in this paper will be evaluated in section 5.
Finally, conclusions and future works will be provided in
section 6.

2 Background and Existing Works

To be successful in evaluating any given XML

database system, XML Benchmarks should satisfy
conventional principles and functionalities [5, 11]. There
are few major works in the area of XML benchmarks,
including the Michigan Benchmark, XMark, X007 and X-
Mach1.

Michigan Benchmark [2,3] focuses on evaluating
performance of primitive operations by a large number of
benchmark queries against a single and large XML
document. It applies seven queries containing insertion
and deletion operations to assess XML updates. It is noted
that this benchmark does not apply any particular scenario

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.133

500

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.133

500

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.133

500

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.133

500

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.133

500

for its data set. Measurement metric in the Michigan
Benchmark is query response time in second.

XMark [4, 5] and XOO7 [6, 7] emphasize on
assessing capability of XML query processors. XMark
uses a scenario and data set from an internet auction site,
whereas XOO7 does not use any specific application for
its scenario. The numbers of benchmark queries are 20
and 18 in XMark and XOO7, respectively. These
Benchmarks are applied in single-user environments
against a single data centric document. However, XMark
and XOO7 totally ignore updates evaluation.

XMach-1 [8, 9, 10] can be used in multi-user
environments with a data set consisting of multiple
documents. It also focuses on evaluation of document-
centric aspects. Update performance of XML database
systems is evaluated by 3 complex queries so it is hard to
conclude that XMach-1 can cover important characteristic
of XML database systems in term of XML updates.

Lack of evaluation of XML updates is the most
problematic of current XML Benchmarks. Many
Benchmarks such as XMark, and XOO7 ignore evaluating
XML update operations. Therefore, these benchmarks are
not appropriate for real-world problems that usually need
to update XML databases.

In addition, performance metric is an important factor
for XML Benchmarks because the result of benchmarking
processes will be presented and interpreted by the metric.
Measurement metrics applied in existing benchmarks are
only single metric such as “query respond time” or “XML
query per second” (Xqps). They simply calculate total
time for query executions or count number of queries
processed per second. Therefore, it is difficult to isolate
and specify which processes have poor performance.
Particularly, with single metric, results of benchmark
processes cannot be used to analyze impacts of
algorithms, and techniques applied in XML DBMS.

3 Criteria for Assessing XML Updates

To benchmark XML updates, we need to specify

characteristics that have strong impacts on update
processes. Eight points applied to evaluate update
performance of XML DBMS will be proposed below.

Bulk loading and Data Parsing. They are the

processes of loading and parsing XML documents into
internal representation of XML DBMS. The processes
assist to reduce number of I/O disk operators while
executing XML queries. Moreover, some XML DBMS do
not support node-based insertion and thus, the XML
documents must be loaded into the database systems and
parsed into the internal representation [5].

Query Parsing. Amount of time to translate and to
parse XML queries in internal language is used to
evaluate query parsing. Time for query parsing is varied
among different XML DBMS such XML-Enabled DBMS

and Native XML DBMS. Amount of time for parsing
XML queries should be considered and isolated and it
will specify costs of real update processes.

XML Index. Indexing XML has central impacts on
structural joins that is applied to find relationships among
nodes during implementing updates. Also, index can
assist to determine node(s) without physically accessing
original XML documents. This can reduce invoking I/O
disk operators, and assist to efficiently process XML
queries. Finally, mechanisms of re-indexing or re-labeling
node(s) have significant impacts on whole update process
because of time consuming.

XML Schema. Schemas have important roles in three
areas: reducing of casting data types, mapping XML data,
and constraint validations of XML documents. Schema-
based XML will save time in casting data types at query
execution time, while in schemaless XML, the inexistence
of schema will result in spending more time for coercion
of data types. Additionally, [12, 13] indicate that XML
schemas bring four advantages including: reduction of
disk space consumption, easy query validation by
adjusting relative path to absolute path, identification of
nodes relationships and improved indexing. Therefore,
with many significant effects of XML schemas on critical
aspects related to XML updates, it is important to evaluate
XML schemas roles while benchmarking XML updates.

Preserving Orders. Costs for preserving orders of
elements in XML documents are expensive. Orders of
nodes are usually violated when there are some changes
in the documents. Hence, impacts of preserving orders
need to be considered in benchmarking XML updates.

Missing Elements. There are different methods used
to compact and to store the missing elements in XML
DBMSs. These compact techniques assist to decrease
redundant data so the XML DBMS can reduce amount of
disk space consumed to store XML documents. This
facilitates efficient storage, course of processing XML
document, as well as processing queries [14].

Reconstruction. Processes of reconstruction XML
documents are challenging for both XML-Enabled and
Native XML database because mechanisms to reconstruct
XML documents involve many operations such as in
mapping, order preservation, joining tables etc. For those
reasons, reconstruction is an important issue needed to
evaluate while benchmarking update performance.

XML Storage Issues. This issue will determine the
mapping and joining techniques used in the database
systems. Also it determines the capabilities of the systems
to restructure XML data. With respect to XML update,
storage approaches are concerned as important factors.
Impacts of XML storage approach will be measured by
amount of disk space for storing XML documents and
their corresponding XML schemas. Additionally, other
effects of the storing approach on XML updates will also
be accumulated in query execution time.

501501501501501

4 Benchmark Design

In this section we propose the data set and the queries

for the proposed benchmark. The query chosen is XQuery
as the current W3C standard for XML database [15].

In this proposal, the performance metric used is a
combination of “query response time” in second, and
“disk space consumed” in Mb. Xqps can be applied when
we simulate multi-user environment by executing this
benchmark queries in multiple threads.

4.1 Benchmark Data Set

Benchmark data set consists of multiple XML
documents including some very large documents. These
documents are divided into two main groups named
Authors*.xml and Books*.xml. These groups are based on
two XML schemas named Authors.xsd and Books.xsd (see
Fig.3). These XML documents are designed to examine
update performance while updating multiple XML
documents. The size are considerably large for the
purpose of examining bulk loading and data parsing

Some important information regarding Author
documents is described as follows. DOB is designed to
use environmental information such as current-date() as a

part of update queries. Document-centric aspects are
represented by element Bibliography. It contains both text
and Period elements. This element is employed to
examine update performance on textual fields. AuthorID
is used to evaluate update performance in referential
cases. Attribute ID and Gender is structured to benchmark
performance of update operations over attributes.

Some important information regarding Book
documents is described as follows. Each Volume of books
has an attribute ISBN; and can have its own Subtitle along
with the title of the book. Editor element is designed to
exam preserving orders of elements while renaming
elements. Elements Chapter and Section are designed to
examine update performance on missing elements.
Chapter is designed recursively to increase levels of XML
tree. It is also used to assess preserving order of elements.

4.2 Benchmark Queries

There are 28 queries, which are designed against the
data set to evaluate the update performance of XML
DBMSs. These queries are divided into 6 groups (see
Table 1). In each group, one query will be provided as an
illustration.

Fig. 3: Data Set Structure

a: Authors.xml

b: books.xml

502502502502502

Table 1. Brief Description of Benchmark Queries

Criteria Query Descriptions
Q 1 Insertion of an attribute
Q 2 Insertion of a node

Bulk loading and
Data Parsing

Q 3 Update a node
Q 4 Insert a sub-tree as a first child
Q 5 Insert a sub-tree as a last child
Q 6 Insert a textual fragment at the shallow level of hierarchy
Q 7 Insert a textual fragment at deep level of hierarchy
Q 8 Delete a sub-tree
Q 9 Delete elements and leaf nodes
Q 10 Concentrated Insertion
Q 11 Scattered Insertion

Evaluation of
XML Index

Q 12 Bulk deletion of nodes that contain a textual fragment specified
Q 13 Rename an element
Q 14 Bulk deletion of nodes at different position

Preserver
Ordering Elements

Q 15 Insert a textual fragment
Q 16 Create XML document that is missed similar elements at the first 100 nodes.
Q 17 Create XML document that is missed similar elements at random 100 nodes

Missing Elements

Q 18 Update on missing elements
Q 19 Delete elements, which satisfy complex conditions
Q 20 Exchange name between 2 elements
Q 21 Replace contents of an element
Q 22 Reconstruction of a new file from an existed XML document
Q 23 Bulk deletion of nodes at random positions

Reconstruction

Q 24 Return a number of XML documents
Q 25 Disk space usage: create a new XML document with a lager number of nodes.
Q 26 Restructuring: exchange positions of a parent nod and its child
Q 27 Restructuring: Return a set of documents; contents of these returned documents are modified.

The returned documents must be conformed to XML schema of the original XML document

XML Storage

Q 28 Delete a whole document.

Bulk loading and Data Parsing. There is no common

bulk-load utility for every XML DBMS. Thus, it is
difficult to benchmark the ability to bulk load and parse
XML data using bulk load utility. Therefore, insert
statements will be used to assess bulk loading and data
parsing. Performance metric for assessing is query
response time.

Example: Query 1
let $attribute in
doc(Authors.xml)/Authors/Author[10]
return do insert attribute Gender “Male” into
$attribute

Evaluation of XML Index. Impacts of XML index on
updates will be examined by nine queries with various
characteristics at different orders and levels. Concentrated
insertion, scattered insertion are also employed to
examine impacts of XML index for re-labeling in worst
cases [16].

Example: Query 7
do insert
 <Paragraph>
 ---- The beginning ----
 <Paragraph>
as first into
doc(“Books.xml”)/Books/Book[5]/Volume[last()]
/Content/Chapter[first()]/Section[first()]

Preserving Ordering Elements. Three queries are
applied to challenge capability of preserving orders of

elements. Measurement metric is query response time in
second.

Example: Query 13
for $node in
doc(“Books.xml”)/Books/Book/Volumes/Volume[@I
SBN = 123456]
return do rename $node/Author[1] as “Editor”

Missing Elements. There are three queries proposed
for measuring this criteria. The metrics used are disk
space usage and query respond time.

Example: Query 18
for $author in
doc(“Authors.xml”)/Authors/Author
where not exists($author/Bibliography)
return insert <Bibliography>A new
Author</Bibliography> into $author

Reconstruction. Queries in this group will challenge
the ability to reconstruct XML data while deleting,
renaming, and replacing data in XML documents. Query
19 is complex to ensure that joining among different
relations or documents are needed to execute updating.

Example: Query 19
for $author in
doc(“Authors.xml”)/Authors/Author, $book in
doc(“Books.xml”)/Books/Book
for $authorID in $book/Volumes/Volume/Author
ID

503503503503503

where ($author/Author ID = $authorID) and
($authorID >100) and
contains($author/Name/LastName, “Nguyen”))
and (contains($book/Title, “Database
system”))
return do delete $author.

XML Storage. This aspect can be evaluated by
inspecting three issues, which are disk space to store
XML documents, ability to restructure XML documents,
and efficiency of deletion of whole a XML document.
The metrics are also combination of disk space consumed
and query response time.

Example: Query 26
let $chapter :=
doc(Books.xml”)/Books/Book[2]/Volumes/Volume[
2]/Content/Chapter[1]
return
(do insert $chapter/Chapter[last()] after
$chapter,
do delete $chapter/Chapter[last()])

Evaluation Roles of Schema and Query Parsing. It is
not needed to generate separate queries against the data
set in order to evaluate roles of XML schemas. In such
cases, impacts of XML schemas on update processes will
be assessed by comparing the execution of benchmark
queries with and without XML schemas. It is noted that
the disk space for a schema-less document is the size of
that document, whereas the disk space for a schema-based
document includes both size of XML document and its
corresponding schemas.

Amount of time for queries parsing is usually reported
by XML DBMS themselves. Thus, it is easy to get
parsing query time, and analyze it. However, some XML
database systems are still not able to inform the amount of
time for parsing queries.

5 Evaluations and Case Study

5.1 Evaluations

The proposed benchmark can be used to assess
various update operations in detail, covering all update
operations supported by current XQuery [15]. On the
other hand, existing benchmarks only cover limited

update operations. Moreover, the proposed benchmark
can be used for multiple documents updates.

It also applies multiple performance metrics including
“query response time” and “disk space consumed”.
Moreover, Xqps will be used when implementing the
benchmark queries against the data set in simulation of
multi-user environments. Thus, the proposal can cover
more update aspects than that can be reported by using
other existing XML benchmarks.

In addition, all scenarios in the proposed benchmark
follow the latest standard on XML Update Facility [17]
and XML Update Facility Use Cases [18].

Finally, this proposal clearly categorizes 8 groups of
aspects that are affected by XML updates. Hence, this
assists in studying each aspect more easily towards
performance optimization. Table 2 shows how the
proposed benchmark is compared to the existing works.

5.2 Case Study

In this section we apply a case study of an internet
auction site taken from W3C Case Study [17, 18]. Then,
we show how the proposed benchmark can be used for
benchmarking typical update requirements for the
particular case study.

The application requires three main documents for
users, items, and bids along with their corresponding
schemas [17, 18].

Update operations are frequently performed on
multiple documents. Environmental information such as
current date and time are also used to update these
documents. There are eight typical update requirements in
this case study. These requirements include insert, delete,
replace and rename operations with various complexity.
Due to the page limitation, we do not show each
requirement in this paper.

Table 3 specifies how existing benchmarks and our
proposed benchmark satisfy the case requirements. For
every requirement, the proposal offers various queries for
benchmarking. It is needed to note that, both the
Michigan Benchmark and XMach-1 only update on a
single document, using limited update operations without
using environmental information.

Table 2. Comparison of Proposed Benchmark and Existing Benchmarks

 Michigan Bench. XMark XMach-1 XOO7 Proposed Benchmark
Domain-Specification Core query

Operators
Query
Processor

DBMS Query Processor Query Processor and Core
query operator

Environment Single-user Single-user Multi-user Single-user Single-user
(Possible for multi-user)

Benchmark data Data-Centric Data-Centric Document-Centric Data-Centric Data & Document-Centric,
Number of documents Single Single Multiple Single Multiple
Schema Support DTD DTD XML Schema DTD XML Schema
Number of Update Queries 7 0 3 0 28
XML Storage Aspects No No Few No Yes
Performance Metric Response Time Response Time Xqps Response Time Response Time, Disk Space

(Possible for Xqps)

504504504504504

Table 3. Requirements are Assesed by Each XML Benchmark.

Requirement. No Michigan Bench. XMark XMach-1 XOO7 Proposed Bench.
1 (Q2, Q4, Q5, Q6, Q7, Q10, Q11, Q15)
2 (Q4, Q5, Q6, Q7)
3 (Q8, Q12, Q14, Q19, Q23)
4 (Q14, Q19, Q23)
5 (Q10, Q11)
6 (Q3, Q18, Q21)
7 (Q3, Q18, Q21, Q13, Q20)
8 (Q13, Q20)

The case study has demonstrated that the proposed

benchmark has complemented existing benchmarks for
analysing update operations.

6 Conclusion and Future Works

Existing XML benchmarks cannot evaluate many
important functionalities of XML database, particularly
for XML updates operations and its performance metric.
In addition, they are lacking of modes to evaluate impacts
of XML Index, XML storage approaches, and XML
schemas towards XML updates.

In this paper, we established new criteria for
benchmarking XML updates. The criteria are realized by
designing performance metrics, data set, and benchmark
queries. The data set and corresponding queries are
carefully designed to cover most functionality for XML
query language, and challenge most critical aspects of
XML database in term of XML updates. The competence
of the proposed benchmark is evaluated and compared
with the existing benchmarks in assessing a W3C-based
case study.

For future works more criteria can be added,
especially by incorporating roles of XML namespace and
XML schemas on the updates. In addition, how the
impacts of multiple-users updates towards concurrency
can also be investigated.

Another way to expand this study is by building a
hybrid benchmark based on existing benchmarks such as
XMark or XMach-1. While our proposed benchmark can
be used for update benchmark, the existing benchmarks
are used to evaluate data retrieval.

References
[1] C. Scmauch and T. Fellhauer, "A Comparison of Database

Approaches for Storing XML Documents," in XML Data
Management: Native XML and XML-Enabled Database
Systems, Addison-Wesley, 2003, pp. 519-546.

[2] J. M. Patel and H. V. Jagadish, "The Michigan
Benchmark: A Micro-Benchmark for XML Query
Performance Diagnostics," in XML Data Management:
Native XML and XML-Enable Database systems,
Addison-Wesley, 2003, pp. 499-518.

[3] K. Runapongsa, J. M. Patel, H. V. Jagadish, and S. Al-
Khalifa, "The Michigan Benchmark: A Microbenchmark

for XML Query Processing Systems," in LNCS 2590,
2003, pp. 160 - 161

[4] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I.
Manolescu, and R. Busse, "XMark: a benchmark for XML
data management," in VLDB 2002, pp. 974-985.

[5] A. Schmidt, F. Waas, M. Kersten, and D. Florescu, "Why
And How To Benchmark XML Databases." SIGMOD
Record 30, 2001, pp. 27-32.

[6] T. Böhme and E. Rahm, "XMach-1: A Benchmark for
XML Data Management," in Datenbanksysteme in BÜRo,
Technik Und Wissenschaft (Btw), 2001, pp. 264-273.

[7] T. Böhme and E. Rahm, "Multi-user Evaluation of XML
Data Management Systems with XMach-1," in LNCS
2590, Springer, 2003, pp. 148 - 158.

[8] S. Bressan, M. L. Lee, Y. G. Li, Z. Lacroix, and U.
Nambiar, "The XOO7 Benchmark " in LNCS 2590,
Springer, 2003, pp. 146-147.

[9] Y. G. Li, S. Bressan, G. Dobbie, Z. Lacroix, M. L. Lee, U.
Nambiar, and B. Wadhwa, "XOO7: applying OO7
benchmark to XML query processing tool," in CIKM
2001, pp. 167 - 174.

[10] S. Bressan, M. L. Lee, Y. Li, Z. Lacroix, and U. Nambiar,
"Benchmarking XML Management Systems: The XOO7
Way," in IIWAS 2001.

[11] S. Bressan, M. L. Lee, Y. G. Li, Z. Lacroix, and U. B.
Nambiar, "XML Management System Benchmarks," in
XML Data Management: Native XML and XML-Enabled
Database Systems, Addison-Wesley, 2003, pp. 477-498.

[12] G. Pallis, K. Stoupa, and A. Vakali, "Storage and access
control issues for XML documents," in Web information
systems, Idea Group Pub, 2004, pp. 104-140.

[13] A. Vakali, B. Catania, and A. Maddalena, "XML Data
Stores: Emerging Practices," Internet Computing 9, 2005,
pp. 62 - 69, 2005.

[14] M. Cokus and Santiago Pericas-Geertsen, "XML Binary
Characterization Properties," W3C, 2004.

[15] D. Chamberlin, D. Florescu, and J. Robie, "XQuery
Update Facility," W3C, 2006

[16] A. Silberstein, H. He, K. Yi, and J. Yang, "BOXes:
efficient maintenance of order-based labeling for dynamic
XML data," in ICDE 2005, pp. 285-296.

[17] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori,
and J. Robie, "XML Query Use Cases," W3C, 2007.

[18] I. Manolescu and J. Robie, "XQuery Update Facility Use
Cases," W3C, 2006.

505505505505505

