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Over Arbitrary Rician Fading Channels With

Multiple Cochannel Interferers
Yao Ma, Teng Joon Lim, and Subbarayan Pasupathy, Fellow, IEEE

Abstract—This paper discusses the performance of communi-
cation systems using binary coherent and differential phase-shift
keyed (PSK) modulation, in correlated Rician fading channels
with diversity reception. The presence of multiple Rician-faded
cochannel users, which may have arbitrary and nonidentical
parameters, is modeled exactly. Exact bit error probability (BEP)
expressions are derived via the moment generating functions
(MGFs) of the relevant decision statistics, which are obtained
through coherent detection with maximum ratio combining for
coherent PSK modulation, and differential detection with equal
gain combining (EGC) for differential modulation. Evaluating the
exact expressions requires a complexity that is exponential in the
number of interferers. To avoid this potentially time-consuming
operation, we derive two low-complexity approximate methods
each for coherent and differential modulation formats, which
are more accurate than the traditional Gaussian approximation
approach. Two new and interesting results of this analysis are: 1)
unlike in the case of Rayleigh fading channels, increasing correla-
tion between diversity branches may lead tobetter performance
in Rician fading channels and 2) the phase distribution of the
line-of-sight or static fading components of the desired user has
a significant influence on the BEP performance in correlated
diversity channels.

Index Terms—Arbitrary Rician channels, bit error probability,
cochannel interferers, coherent and differentially coherent modu-
lations, equal gain combining (EGC), maximum ratio combining
(MRC).

I. INTRODUCTION

I N CELLULAR mobile communications, the detection
of one user is often corrupted by cochannel interference

(CCI) as well as background Gaussian noise. In code-division
multiple-access (CDMA) systems, CCI is more often known as
multi-access interference (MAI). It is generally acknowledged
that the MAI problem in CDMA is so severe that sophisticated
multi-user detectors are required to achieve good performance.
In this paper, however, we concentrate on a scenario where the
level of CCI is low enough to allow the use of conventional
detectors and study their performance for a very general Rician

Paper approved by R. Raheli, the Editor for Detection, Equalization, and
Coding of the IEEE Communications Society. Manuscript received August 30,
2000; revised June 11, 2001, and August 28, 2001.

Y. Ma was with the Centre for Wireless Communications, Singapore
117674. He is now with the Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
mayao@comm.utoronto.ca).

T. J. Lim and S. Pasupathy are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
(e-mail: limtj@comm.utoronto.ca; pas@comm.utoronto.ca).

Publisher Item Identifier S 0090-6778(02)02023-8.

fading channel, with binary coherent and differential PSK
(BPSK and DPSK), and CCI modeled exactly. This framework
is suitable for time-division and frequency-division multiple
access (T/FDMA) systems, in which guard intervals and guard
bands ensure channel orthogonality within a cell, and CCI
only comes from cells in the next tiers that are using the same
frequency band.

The assumption of the Rice distribution for the fading channel
is motivated by the fact that it is used to model propagation paths
consisting of one strong direct line-of-sight (LOS) component
and many random weaker components [1], [2], a situation that is
realistic in most wireless applications such as cellular communi-
cations. It includes the Rayleigh fading channel and the unfaded
Gaussian noise channel as two special cases, and thus analysis
of Rician channels is very useful, but generally more difficult
than analysis of Rayleigh channels.

If the fading channel1 is estimated at the receiver, coherent
modulation formats such as PSK can be employed. In this case,
coherent detection is carried out at the receiver, and maximal
ratio combining (MRC) may be used for diversity combining.
On the other hand, if the fading process is difficult to track, dif-
ferentially coherent modulation such as DPSK, in which data are
represented by the phase difference between successive trans-
mitted symbols, can be used in concert with differential detec-
tion instead. We should note here that differentially modulated
signals can also becoherentlydetected [3], in which case the
differential modulation operation helps to resolve the phase re-
versal problem which is encountered for coherent modulation in
fading channels. In this paper, we deal only with coherent BPSK
and differential detection of DPSK.

Diversity reception is known to substantially improve
performance and is often employed in practice, for instance
with multiple receiving antennas. Optimum combining (OC) in
fading channels with multiple interferers has been analyzed in
many papers, for example, [4]–[6] to name a few. However, the
implementation of OC requires channel estimates for all the
cochannel interferers as well as for the desired user. Therefore,
in practice, it is more common to use MRC for coherent
detection [7] and equal gain combining (EGC) for differential
detection. These are the combining schemes considered in
this paper, which is concerned with performance analysis
of commonly usedsystems, that may be suboptimal but are
relatively easy to implement.

1Meaning the attenuation and phase shift introduced in each path of a multi-
path channel.
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In previous work on bit error probability (BEP) analysis for
cellular mobile systems, a widely used technique is to obtain
the probability density function (pdf) of the signal-to-interfer-
ence-plus-noise ratio (SINR) at the receiver output, and then
average the conditional error probability over that pdf to get the
average BEP. Since the required pdf is difficult to obtain except
in the simple case of Rayleigh fading channels, the analysis per-
formed so far has been limited to such channels [7], [5], [6]. For
Nakagami fading channels, a pdf expression for the SINR was
derived in [8], but is applicable only to the case of single-channel
(nondiversity) reception.

An alternative approach that is valid for many modulation for-
mats and receiver structures is to find the distribution function
of the decision variable and then obtain the BEP as the prob-
ability that the decision variable is smaller than zero [1], [9].
Using this method, BEP expressions for linear coherent CDMA
multiuser detectors in Rayleigh multipath fading channels were
derived in [10]. By working on the moment generating func-
tions (MGFs) of the decision variables, we derived in [11] both
closed-form expressions and a numerical method to evaluate the
BEP for binary and quaternary DPSK (2/4-DPSK) and non-
coherent frequency shift keying (NCFSK) with postdetection
diversity combining, in arbitrary Rician fading channels. Fur-
thermore, by using the MGF approach, BEP expressions of 2/4
DPSK with post-detection EGC in correlated Nakagami fading
channels were derived in [12].

In [11] and [12], only the case of single-user communications
is considered. Exact BEP expressions for cellular mobile com-
munication systems, which take into account the effect of CCI,
are not available for Rician fading channels with diversity com-
bining and is the topic of this paper.

For analysis of a desired user in the presence of multiple
cochannel interferers, we express the decision variable in an
indefinite Gaussian quadratic form, derive its MGF condi-
tioned on the interfering users’ data, and then obtain the exact
conditional BEP expressions. To compute the average BEP,
we need to average over all possible interfering bit vectors,
and that involves a complexity that increases exponentially
with the number of interferers. To evaluate the performance
of systems with a large number of interferers, we propose
two low-complexity approximate BEP evaluation methods,
which are derived using the joint Gaussian distribution analysis
framework. This technique is significantly different from the
traditional Gaussian approximation (TGA) approach [13]–[15],
in which the residual CCI and noise is approximated as a
Gaussian random variable, which is assumed to be independent
from the desired signal component.

Numerical results show that the approximate schemes match
the exact results well and are superior to the TGA approach. The
results also show that the phase distribution of the static fading
components of the desired signal has a significant impact on
the BEP performance in the case of nonindependent diversity
branches. Depending on the phases of the static components,
the BEP does not necessarily degrade as the fading correlation
increases, unlike the case of Rayleigh fading channels. How-
ever, increased correlation (for instance, by having antenna el-

ements closer together) does notalwaysimprove performance,
and therefore designing a better receiver by using the new find-
ings will be a nontrivial task.

Finally, it should be mentioned that the analytical framework
proposed in this paper is very general, and so the theoretical
results are applicable to other modulation schemes like 4-
and 8-phase coherent and differential PSK (4-PSK/DPSK,
8-PSK/DPSK) [11], [16], and NCFSK [11], since for all these
modulation formats the BEP is given by the probability that the
decision variable, which can be written in a Gaussian quadratic
form, is smaller than zero (see, for example, [11]). The results
are also useful for analyzing linear multiuser receivers [10]
in arbitrary Rician faded CDMA channels, after suitable
modifications.

Throughout this paper, we use the superscripts, , , and
1 to represent the complex conjugate, transpose, conjugate

transpose, and matrix inversion operations, respectively.

II. SIGNAL MODEL

We consider a cellular mobile system where the signal
received from a desired user over a total of diversity
branches is corrupted by cochannel interferers and additive
white Gaussian noise (AWGN). After the matched-filtering
and sampling operations of the received signal, the complex
baseband output signal in theth bit interval can be expressed
conveniently by2

(1)

where , with
representing the received signal at

the th antenna, for . For BPSK, is an
equiprobable 1, independent data symbol sequence; while
for DPSK, is obtained by differentially modulating
the original data bit , i.e., for
modulation and for demodulation.
In (1), is the com-
plex channel coefficient vector for theth user, where the
subscript 0 represents the desired user, and
represent the cochannel interferers. The noise vector

is a zero-mean complex Gaussian
process, with variance for the th element . Below we
assume the noise variance is identical for all the branches,
that is, . For all the complex Gaussian
processes considered in this paper, including the channel
realization and the noise, we assume that they are wide sense
stationary (WSS) and circularly symmetric. The receiver
models for BPSK modulation with MRC and DPSK modula-
tion with EGC are depicted in Figs. 1 and 2, respectively.

For convenience, let denote the vector
whose elements have the joint complex Gaussian distribution

2Here we assume that the received signal is matched-filtered and then sampled
at the symbol rate, as in most previous work. For the optimal detection of signals
in fading channels [17], the sampling operation no longer provides sufficient
statistics. However, optimal detection is not considered in this paper.
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Fig. 1. The signal model for BPSK receiver withL-fold MRC, and in the presence ofN cochannel interferers. After the matched filtering and sampling at the
symbol rate, the received signals are coherently combined with MRC to form the decision variableD.

Fig. 2. The signal model for DPSK receiver withL-fold EGC, and in the presence ofN cochannel interferers. After the matched filtering and sampling at the
symbol rate, the received signal goes through the product detector with EGC, and then the decision variableD is generated.

with mean and covariance matrix . When has
full rank, the pdf of is defined as [9]3

(2)

For Rician fading channels, we assume that the fading
process for different users and adjacent symbol intervals
has a joint Gaussian distribution. Then the channel vector

has the Gaussian distribution
, where , with

, is the mean
vector, and is the
fading channel covariance matrix, for .

If we make the realistic assumption that the fading processes
for different users are independent, then the covariance ma-
trix is block diagonal and can be expressed as

, where
is the fading covariance matrix for

the diversity branches of theth user, .
For the th diversity branch ( ) of the th user,

the Rician factor is defined as , where

3The difference in the pdf shown here from that shown in [9, Appendix B]
arises from the fact that we define the covariance matrix of a complex vectorx

asE(xx ), rather than(1=2)E(xx ) as in [9].

is the power of the scattered com-
ponents. The temporal fading correlation coefficient between
adjacent symbol intervals is then given by

, which depends on the
fading power density spectrum and the Doppler fading band-
width . For example, for Clarke’s
fading spectrum [18] and for the
Gaussian fading spectrum [19], whereis a bit duration. If for
every branch, , the Rician channel is reduced to the
Rayleigh fading channel; when , it is equivalent to
an unfaded Gaussian noise channel.

III. MGF OF THE DECISION VARIABLES

In this section, we derive the MGF expressions for the BPSK
and DPSK decision variables and then use these to evaluate the
probability of error expressions in the following section.

A. BPSK With MRC

Let the data vector of all the users be ,
where is the data vector of the
interferers. For BPSK modulation with MRC diversity, the BEP
can be expressed by the probability that a decision variable is
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smaller than zero. This decision variable for the desired user
conditioned on is given by4

(3)

where

(4)

(5)

In (5), and are the zero and identity matrices, re-
spectively. The average BEP of BPSK with MRC can be ex-
pressed as

(6)

For coherent detection,5 we have ,
and therefore the average BEP is given by

(7)

To evaluate the cumulative distribution function (cdf) expres-
sion , we will use the moment generating func-
tion (MGF) method, and the MGF of is derived next.

With the assumption that the fading processes for different
users are independent, the covariance matrix of is inde-
pendent of and can be expressed as

(8)

where is the noise correla-
tion matrix, for .

The mean vector of conditioned on a realization of
is given by

(9)

where denotes the expectation operation with respect to
the channel vector and noise vector .

Employing a result for the distribution of a noncentral
Gaussian quadratic form [9], [21], [22], the MGF of in
(3) can now be obtained as

(10)

4When the noise variancef� g is not identical at different
diversity branches, we shall change vectorc (i) in (3) to
[c (i)=� ; . . . ; c (i)=� ] , as in [9].

5For differential modulation, it has been shown [20] that the BEP conditioned
on the transmitted symbol is a function of the symbol, and in generalP (d =
1) 6= P (d = �1).

and

(11)

where is the inverse of the symmetric square root of,
and denotes the determinant of matrix.

From (9) and (10), some observations are in order. First, if
for , that is, all the interferers are

Rayleigh faded, then the MGF expression (10) is independent of
, and so the complexity of BEP evaluation is independent

of the number of interferers.
Second, for the single-user channel where only the desired

user is present, if there is fading correlation amongst different
diversity branches, then the phases of affect the BEP,6 in
contrast to the case of independent diversity branches where
the static components can be regarded as real constants [23].
To illustrate, we define the phase vector for the desired user
as , then can be expressed
as , where
denotes the vector obtained after each element of is re-
placed by its modulus. For independent diversity channels,
in (8) consists of four subblocks which are diagonal matrices,
and the phase matrix can be
absorbed in the exponential term of (10) without changing the
MGF expression. However, for the correlated fading case, these
submatrices of will no longer be diagonal, and so variation
in will result in different MGF expressions. This observation
is significant for the BEP evaluation.

Finally, in the presence of multiple interferers, we define the
phase vectors for the static components of the interferers as

, for . Whether
the diversity branches are independent or correlated,
must be taken into account for BEP evaluation.

To represent in a more compact form, we define a
matrix and represent its eigen-decomposition
as , where

(12)

is the eigenvalue matrix of . Also, we define

(13)

Equation (10) can now be simplified to

(14)

6It is furthermore observed from (10) that, for the single-user channel, only
the phase differences between the static components will affect the MGF ex-
pression. So, without loss of generality, the phase of the first static element may
be set to zero.
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where is given by (13), and is a
diagonal matrix.

In the case of repeated eigenvalues, the MGF of is given
by

(15)

where is the multiplicity of the eigenvalue , and (
) is the total number of distinct eigenvalues. In (15)

(16)

where denotes the set of indices associated with theth
distinct eigenvalue. It is then clear that are
the distinct poles of the conditional MGF . For nu-
merical BEP evaluation, (14) will be used for convenience; how-
ever, for deriving a closed form BEP expression, we will use
(15). For BPSK with MRC in arbitrary Rician channels, there
will be MGF expressions for (14) conditioned on the data
pattern of the interferers.

B. DPSK With EGC

For some applications where the channel estimates are not
available, differentially coherent modulation, such as DPSK, is
often employed [1]. Post-detection equal gain combining (EGC)
is a widely used diversity scheme for DPSK signals. Letting

, we give the decision variable for
DPSK with post-detection EGC conditioned onas [9]

(17)

where and is given by (5).
The average BEP can be expressed as

(18)

If there is noise correlation between adjacent symbol intervals,
that is, , then for and 1 there are usually
different conditional BEPs, a phenomenon called channel non-
symmetry7 that is peculiar to differential detection [20]. So we
shall evaluate both the cases and 1.

7To exploit this phenomenon to obtain better system performance, it is pos-
sible in principle to design an encoding scheme which gives a lower average
BEP. However, this is a nontrivial task since the nonuniforma priori bit distri-
bution may lower the source entropy.

With the assumption that the fading processes for different
users are independent, the covariance matrix of is given
by

(19)

The mean vector of is given by

(20)

The MGF expression for the decision variable can be obtained
by using the same method proposed in Section III-A for BPSK.
Note that for DPSK there are such MGF expressions
depending on the data pattern of the desired user and all the
interferers.

IV. EXACT BEP EVALUATION

A. Numerical Method

Using the MGF , the cdf of can be evaluated
by using the saddle point technique proposed in [24], that is

(21)

where and is a positive real constant smaller than
the minimum positive root of .

The integral in (21) can be computed efficiently by a trape-
zoidal summation [24]

(22)

where , is the saddle point of
, and can be computed recursively by Newton’s method,

that is, . , and are the
first- and second-order derivatives of function evaluated
at , with being defined as .
In (22), is the step size, whose initial value can be set to

, which roughly measures the width of the
integrand in (22) as a function of[24]. The series in (22) can
be truncated to achieve any required precision. The summation
in (22) is along a vertical line passing through the saddle point,
which is both simple and accurate. A more efficient algorithm
that converges faster than trapezoidal summation may be ob-
tained by integrating along the curved path of steepest descent
of the MGF [25]. There are also other low-complexity methods
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for evaluating (21), such as the saddle point approximation tech-
nique [25, Sec. 5.3].

The explicit expressions for , , and are given
by,

where and , for , are given by (12) and
(13), respectively. Note that this method also applies to the gen-
eral case where there are some repeated eigenvalues.

When the saddle point is obtained, (21) can also be evalu-
ated by using an efficient Gauss–Chebyshev quadrature (GCQ)
formula [26]. Letting and , (21)
is reduced to

(23)

where

(24)

Next, by defining in (23), we obtain a GCQ formula
for evaluating the conditional BEP as

(25)

where is defined in (24), and is a residual term. Our
numerical evaluation shows that (25) usually converges faster
than (22), and it is also less sensitive to the computational accu-
racy of the saddle point .

B. Closed-Form Expressions

Assuming that, among the distinct poles of given
in (15), of them denoted by are negative,
the cdf of can be evaluated by finding the residues of

at these negative poles. This method is
described in detail in [11]. Following the same approach, we
obtain a closed-form expression for (21) as

(26)

where

(27)

In (27), is given by

(28)

where , for , is given by (16).
Equation (26) gives a new and general closed-form BEP ex-

pression for coherent and differentially coherent modulations
over arbitrary Rician multipath fading channels with multiple
cochannel interferers. Since (26) is derived using the fast-con-
vergent power series expansion of the MGF about its
negative poles, (26) is expected to converge rapidly with respect
to the index therein. However, a strict convergence rate anal-
ysis seems difficult, since it involves some high-order deriva-
tives of the MGF at each of its negative poles. The numerical
results for a single-user communications system given in [11]
showed that the series (26) converges more slowly as the Rice

-factor increases, therefore it is more suitable for analysis
of Rician fading channels with a small -factor, for example,

dB. In this case, for the index summing from 0 to
, letting usually gives a very accurate result.

In comparison, the numerical scheme [(22) or (25)] which uses
the saddle point integration looks more convenient for computa-
tions, since it is both easier to program and gives accurate results
with a moderate complexity.

The exact evaluation of BEP for coherent and differentially
coherent detection in arbitrary Rician channels will have a com-
plexity exponential in the number of interferers. For cellular
radio systems with a large number of cochannel interferers, the
complexity of an exact BEP expression will be overwhelming.
To evaluate the BEP efficiently and with an acceptable accuracy,
we use approximations on the MGF expressions of the decision
variables, and then obtain approximate BEP expressions that are
much simpler. Several approximation techniques are proposed
in the next section.

V. APPROXIMATE BEP ANALYSIS

A. BPSK With MRC

To reduce the complexity for exact BEP evaluation, we try to
average the conditional MGF expression over to obtain an
unconditional MGF expression, that is

(29)

Unfortunately, this operation has a complexity increasing expo-
nentially with the number of interferers. In this section, we give
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an approximate MGF expression for (29), and then an
approximate average BEP expression can be obtained as

(30)

which can be evaluated by using the closed-form expression or
the numerical method proposed in the previous section.

The procedure to obtain is derived below. In the condi-
tional MGF expression (14), only the exponential term is a func-
tion of . Without loss of generality, assuming we
can decompose to two vectors , where

(31)

contains the static components of the desired user, and

(32)

is the combination of static components of theinterferers.
Due to the equiprobable, antipodal data modulation in

(32), we can apply the Central Limit Theorem and approximate
as a zero mean complex Gaussian vector with covariance

matrix

(33)

With this approximation, is a complex Gaussian vector,
with mean and covariance matrix given in (33).

Now we find that the exponential term in (10)
can be regarded as a noncentral complex Gaussian quadratic
form, and thus its MGF expression can be derived. Note that
the matrix is rank deficient. In this case, we shall
decompose as , where is a matrix
with rank ( ).

Using the result in the Appendix, we can get an approximate
average MGF expression for (29) as

(34)

where and are given by (31) and (12), respectively. We
call (33) and (34) Method I from now on. Alternatively, if we
consider only the energies of the static components of, we
can use instead of in (34); this approximation is

called Method II. We propose Method II since, at least in inde-
pendent fading channels, the cross correlation of the static com-
ponent amongst different branches will not affect the BEP. Fur-
thermore, for convenience, if the phases of the static fading com-
ponents of the interferers are assumed to be unknown, a good
approximation can be obtained by ensemble averaging over the
uniformly distributed phases. In this way, the off-diagonal ele-
ments in are set to zeros even for correlated fading chan-
nels.

Since analytical differentiation of (34) to obtain the saddle
point is difficult, numerical methods can be employed instead.

The MGF in (34) is obtained by averaging firstly
over the distribution of the scattered components of and
the noise , and then over the distribution of , with the
multivariate Gaussian distribution approximation of . In fact,
since and are covariance matrices of two independent
joint Gaussian distributions, these two steps can be merged into
one. As a result, we obtain a form equivalent to (34) as

(35)

where (for Method I)

(36)

(37)

and is given by (8). For Method II, is used in-
stead of in (36). The equivalence between (34) and (35) is
verified by our numerical comparisons.

It is interesting to note that (35) is the MGF expression for a
Gaussian quadratic form , where . So
it is clear that, in this approximation, the system is changed to a
single-user diversity channel, where or , the co-
variance matrix of , is directly incorporated into the covari-
ance matrix . This means that the Rician-faded interferers
are approximated to be Rayleigh faded, with modified covari-
ance matrix instead of . In addition to the reduced com-
plexity for BEP evaluation, Method II also avoids the need to
know , the phases of the static components (for

) of the interferers.
With the new approximate MGF expressions, we can eval-

uate the approximate average BEP of coherent modulation
with MRC and multiple cochannel interferers, by using the
closed-form expression or the numerical method proposed in
Section IV. By using the numerical method, these schemes need
to evaluate only one integral rather than integrals required
for the exact expression.
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B. DPSK With EGC

This case is slightly different from that of BPSK; we need to
first average (19) over the distribution of and obtain

(38)
Next, using the same method as in the previous subsection for
BPSK, we approximate as a complex Gaussian vector with
mean , and covariance matrix , which are respectively
given by

(39)

(40)

Assuming that has full rank, we can use a derivation similar
to the one used to obtain (10), and get an approximate average
MGF expression

(41)

where, in the expression for , is replaced by in (38).
We call this scheme Method I for DPSK. If we use the diagonal
matrix rather than in (41), we call the resulting
expression Method II. When is rank deficient, (34) can be
used with the parameters replaced by those for DPSK.

Similarly to the case of BPSK, we can obtain a simpler form
that is equivalent to (41) as

(42)

where is given by (39). In (42), we set
for Method I and for Method II, where

and are given by (38) and (40), respectively. By using
a numerical method, this scheme needs to evaluate only two
integrals rather than integrals for the exact evaluation
scheme.

Note that the approximation technique proposed in this sub-
section and the previous one is carried out in a multivariate

analysis framework, thus it is significantly different from tradi-
tional Gaussian approximation (TGA) technique for BEP anal-
ysis [13]–[15], in which the residual CCI and noise is approxi-
mated as a Gaussian random variable.

C. Comparison With the Traditional Gaussian Approximation

To illustrate the differences between our technique and the
popular TGA method, we develop new results by applying the
latter method to the signal model studied in this paper.

Let the instantaneous SINR of the receiver output be denoted
by . The average BEP is given by

(43)

where is the probability density function (pdf)
of and is the conditional BEP. For
BPSK modulation , where

is the Gaussian- function.
For DPSK with -fold diversity, the conditional BEP is given
in [1].

For MRC diversity reception of the signal model given in (3),
the output signal at theth branch, , can be expressed as (here
we drop the bit index for simplicity)

(44)

where the first term on the right-hand side is the desired signal
component, and the second and third terms are due to the CCI
and the noise, respectively. The variance ofconditioned on

is given by

The SINR for is then given by

To proceed further, we assume that the signals for all the inter-
ferers are i.i.d. at the diversity branches, then the denominator
of is independent of ( ), and the SINR of the
MRC output is given by

(45)

where is
the average power of all the interferers and the noise per diver-
sity branch, and is defined as the mean signal
power for the th interferer, for .

Deriving the pdf expression is both tedious and un-
necessary. Instead, we can use the MGF method to evaluate (43)
more conveniently. The MGF of , , can be eval-
uated by using the method proposed in [27], as shown below.
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TABLE I
BEP VALUES (TRUNCATED TO FOUR MOST SIGNIFICANT DIGITS) COMPUTED BY USING THE ACCURATE AND THE TGA METHODS FORBPSK WITH MRC
(L = 3) IN INDEPENDENT ANDCORRELATEDFADING CHANNELS.K = 7 dB,K = �1 dB,N = 6, AND 
 = 30 dB.x(�n) DENOTESx� 10

Define the eigen-decomposition of the covariance matrix of
as , with . Then

we define a transform of the static fading vector of, that is
. The MGF is

given by

(46)

By using the alternative form of the Gaussian-function
[28], for BPSK demodulation the average BEP expression in
(43) is given by

(47)

where is given by (46). To the best of our knowledge,
(47) and (46) are new and exact results for MRC diversity of a
Rician-faded signal in the presence of multiple Rayleigh-faded
interferers with arbitrary mean signal powers. In this fading
channel case, the TGA method [(46) and (47)] is equivalent to
our exact approach (7), and also to our low-complexity Methods
I and II [(30), (35)], which is verified by our numerical evalu-
ations. This can be explained by two facts: 1) when the inter-
ferers are Rayleigh faded, , the sum
of the interferers’ signal and the noise at eachth branch
( ), is a zero-mean Gaussian variable with variance

and 2) the sum of the interference components and the noise
is independent between different branches.

Based on a different approach, the work in [7] presents
another expression for the distribution of the SINR of
one Rayleigh-faded signal in the presence of multiple
Rayleigh-faded interferers with -fold MRC diversity. In
[7], a pdf expression was derived by analyzing the
probability density distributions of both the interferers and
the desired signal. In comparison, our TGA result [(47), (46)]
applies to more general cases. First, our result applies to the
case when the desired signal is Rician-faded with nonidentical
statistics at different branches, while in [7] the desired signal
was limited to be Rayleigh faded with i.i.d. statistics. Second,
for the case of different mean powers of the CCI, [7] gives a
result for up to interferers, while our result is valid for an
arbitrary number of interferers with distinct . Equation (46)
can also be used to obtain the outage probability expression for
the desired signal, in the form of a single integral. Furthermore,

by using (46), the analysis can be extended to many coherent
and noncoherent modulation formats (see [29]).

Although the new result using the TGA approach is quite
useful, it is still less versatile than the low-complexity Methods I
and II [(30) and (35)] in that the former only applies to the inde-
pendent fading channels, while the latter methods are applicable
to correlated fading channels as well. Some numerical compar-
ison of the TGA approach and our low-complexity methods are
given in the next section.

VI. NUMERICAL RESULTS

Numerical results on BEP performance of coherent and
differentially coherent detection are presented, including
the effect of diversity reception, fading correlation, and
multiple cochannel interferers, etc. For the Rician fading
channel, the Rician factors at all the diversity branches that
belong to the same user are assumed to be identical, that is

for . Further-
more, when the fading correlation is considered, we assume a
constant correlation model for all the users. For example, for

, we set

for all , where and are the normal-
ized mean signal powers of the desired user and the cochannel
interferers, respectively. The iid fading channel model is ob-
tained by setting . The average signal-to-noise ratio (SNR)
at the combiner output is defined as , and the
average signal-to-interference ratio (SIR) is defined as

.
First, we compare the TGA approach [(47), (46)] with the

exact result for BPSK modulation with MRC diversity ( ),
when the desired user is Rician faded with the SNR
dB, and in the presence of Rayleigh-faded interferers.
The desired user has the Rician factor dB and real
static fading components (that is ). The BEP values
computed by using the exact and approximate expressions for
different operating SIRs are presented in Table I.

For independent diversity with Rayleigh-faded interferers,
the TGA gives accurate results as expected. However, in
the presence of correlated diversity branches ( ), the
TGA approach is quite inaccurate. Note that, in this case, the
approximate schemes using (35) is accurate.
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TABLE II
BEP VALUES (TRUNCATED TO THE THREE MOST SIGNIFICANT DIGITS)

COMPUTED BY USING THE ACCURATE AND THE APPROXIMATEMETHODS FOR

BPSK WITH MRC (L = 3) IN INDEPENDENT ANDCORRELATED FADING

CHANNELS. K = 7 dB,K = 3 dB,N = 6, AND 
 = 30 dB.
x(�n) DENOTESx � 10

TABLE III
BEP VALUES (TRUNCATED TO THE THREE MOST SIGNIFICANT DIGITS)

COMPUTED BY USING THE ACCURATE AND THE APPROXIMATEMETHODS FOR

BPSK WITH MRC (L = 3) IN INDEPENDENT ANDCORRELATED FADING

CHANNELS. K = 7 dB,K = 6 dB,N = 6, AND 
 = 30 dB.
x(�n) DENOTESx � 10

Next, we show the accuracy of our low-complexity methods
(35) for the case of a Rician-faded signal in multiple Ri-
cian-faded interferers. We assume the static components of
the desired user are complex, with the phase vector

. The phases of the static components of
the interferers, , are independent and uniformly dis-
tributed between . We set dB and
dB. Let denote the Rician factor of
all the interferers. The BEP results using the exact analysis (7)
and the approximate methods (35) for dB and 6 dB are
given in Tables II and III, respectively.

The results show that our low-complexity methods give quite
a good approximation to the accurate result, and the accuracy
improves when the SIR becomes high. In comparison, Method
II is more accurate than Method I for medium to high SIRs.

After showing the accuracy of our low-complexity methods,
we apply them to the analysis of BEP performance of coherent
and differentially coherent modulations in a cellular radio
system and study in detail the effects of correlated diversity
branches and nonidentical phases in. In the system, the
normalized reuse distance is defined as the ratio of the
distances between the centers of two nearby cochannel cells
and the cell radius of the desired station. As in [30], the
fourth power path loss law is assumed for the user and all the
interferers; we also use the approximation that the distances

Fig. 3. BEP versus the normalized reuse distance for BPSK with MRC in
independent and correlated Rician fading channels, withL = 2, K = 7
dB, K = 3 dB, and withN = 6 cochannel interferers.��� is real and
f��� g are complex.

Fig. 4. BEP versus the normalized reuse distance for BPSK with MRC in
independent and correlated Rician fading channels, withL = 2, K = 7 dB,
K = 3 dB, and withN = 6 cochannel interferers.��� is complex with
phases��� = [0; �=2] , andf��� g are also complex.

from the different interfering base stations to the mobile are
equal. Since the interference is considered to be overwhelming
over the background noise in cellular radio systems, we ignore
the effect of the additive noise. We set dB and
dB below.

In Figs. 3 and 4, we plot BEP curves againstfor BPSK with
MRC diversity ( ) over independent and correlated Rician
fading channels, and with cochannel interferers.

In Fig. 3, the static fading components of the desired user are
assumed to be cophased (i.e., ), while in Fig. 4 the static
components have the same powers but different phases which
are arbitrarily set to . We use this set of values
for just to demonstrate that have a significant impact on the
BEP performance, nevertheless it should be understood that
may be arbitrarily distributed in reality. The phases of the static
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Fig. 5. BEP versus the normalized reuse distance for DPSK with EGC in
independent and correlated Rician fading channels, withL = 2, K = 7
dB, K = 3 dB, and withN = 3 cochannel interferers.��� is real and
f��� g are complex.

components of the interferers, , are still assumed to
be independent and uniformly distributed between .

As the reuse distance increases, the BEP in all cases de-
creases, and the approximate methods give a good matching
to the exact results in the whole reuse distance range studied.
For independent channels, the BEP curves are insensitive to the
phase vector , which can be observed by comparing the curves
for in Figs. 3 and 4. However, for correlated fading chan-
nels, has a substantial impact on the BEP performance. It is
interesting to observe that, when , the BEP curves de-
grade significantly as the fading correlationincreases. On the
contrary for that we have set, the BEP curves
improves as increases. Our extensive computations (not shown
here) also demonstrate that channels with cophasednor-
mally cause higher BEPs than those with noncophased. In
other words, static fading components with phase differences for
the desired user will in many cases give lower BEPs, as shown
in Fig. 4.

Next we consider DPSK modulation with EGC diversity, with
and cochannel interferers. The exact result

for DPSK is computed from (18) and (22), by using the MGF
expression (10) and (11), where and are given by (19)
and (20). BEP versus is plotted in Fig. 5 for real , and
in Fig. 6 for complex , respectively. The temporal fading
correlation coefficients are assumed to be identical for all the
branches and for all the users, that is, , for

. We set : it is known that a larger
corresponds to a smaller Doppler frequency bandwidth for a

given fading power spectrum [1], [9], thus a better performance
will result for differential detection.

As increases, the approximate BEP curves become more
accurate and merge with the exact BEP curves, and they all
give almost identical error floors for the same spatial correla-
tion . The appearance of error floors when the CCI vanishes
is due to the fact that (or the nonzero Doppler fading
bandwidth) for the desired signal. This also demonstrates that

Fig. 6. BEP versus the normalized reuse distance for DPSK with EGC in
independent and correlated Rician fading channels, withL = 2, K = 7 dB,
K = 3 dB, and withN = 3 cochannel interferers.��� is complex with the
phase vector��� = [0; �=2] , f��� g are complex.

the Rayleigh-fading approximation for the interferers becomes
more accurate for larger reuse distance. Whenincreases the
same trend as the coherent modulation is observed, that is, the
performance degrades for largerwith real static components,
while it improves for complex static components with the phases

that we set. It is interesting to see that with complex and
higher , the BEP curves and their error floors are significantly
lower than the others.

VII. CONCLUSION

In this paper, we proposed a general mathematical framework
to determine the BEP performance for binary coherent and dif-
ferentially coherent modulation formats with diversity reception
in arbitrary Rician fading channels, and in the presence of mul-
tiple cochannel interferers. The effects of arbitrary and distinct
fading correlation and noise correlation between different diver-
sity branches for the desired user and the interferers were mod-
eled exactly. By expressing the decision variables in Gaussian
quadratic forms and using the MGF approach, we derived the
exact BEP expressions, which however entails a complexity that
increases exponentially with the number of cochannel inter-
ferers. To facilitate performance evaluation for systems with a
large number of cochannel interferers, we proposed two low-
complexity approximate BEP evaluation methods which yield
accurate results and are far superior to the TGA method.

In independent Rician fading channels, the BEP performance
is insensitive to the phase distribution of static fading compo-
nents for the desired user. However in correlated diversity chan-
nels, the phase distribution plays an important role and may
result in significantly different BEP performance. Numerical
results also showed that increasing fading correlation will not
necessarily degrade the detection performance in Rician fading
channels, but on the contrary may significantly improve it, un-
like the case for the Rayleigh fading channels.
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With slight modifications, the results in this paper are ap-
plicable to many other modulation formats, including 4- and
8-PSK/DPSK, NCFSK. The proposed analytical technique is
also useful for the analysis of linear multiuser receivers in ar-
bitrary Rician faded CDMA channels, which is an ongoing re-
search subject.

APPENDIX

DERIVATION OF THE APPROXIMATE AVERAGE MGF
EXPRESSION FOR THEDECISION VARIABLE

We approximate as a Gaussian vector, that is,
. After decomposing to ,

we can express as , where
is a -variate complex Gaussian vector, and its pdf is

(A1)

The derivation here follows similarly to that of [21, Theorem
3.2a.3] for real Gaussian quadratic forms, but our result is more
general and is applicable to more complex Gaussian quadratic
forms. Using (10) and (A1), the average MGF expression (29)
can be approximated by

(A2)

Here denotes an -dimensional integral over vector.
Obviously is not a zero matrix, then it can be shown
that

(A3)

where . Using the prop-
erty of Gaussian density function that

[see (2)], we have

(A4)

It is notable that, since variablecan be in an arbitrarily small
neighborhood of the origin, without loss of generality both ma-
trices and can be assumed Hermitian sym-
metric, and in addition can be assumed to be
positive definite. By substituting (A4) and (A3) into (A2), fi-
nally we get a new average MGF expression

(A5)

REFERENCES

[1] J. G. Proakis,Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995.

[2] M. K. Simon and M.-S. Alouini, “A unified approach to the proba-
bility of error for noncoherent and differentially coherent modulations
over generalized fading channels,”IEEE Trans. Commun., vol. 46, pp.
1625–1638, Dec. 1998.

[3] L. Bin and P. Ho, “Data-aided linear prediction receiver for coherent
DPSK and CPM transmitted over Rayleigh flat-fading channels,”IEEE
Trans. Veh. Technol., vol. 48, pp. 1229–1236, July 1999.

[4] J. H. Winters, “Optimum combining in digital mobile radio with
cochannel interference,”IEEE J. Select. Areas Commun., vol. SAC-2,
pp. 528–539, July 1984.

[5] A. Shah and A. M. Haimovich, “Performance analysis of optimum com-
bining in wireless communications with Rayleigh fading and cochannel
interference,”IEEE Trans. Commun., vol. 46, pp. 473–479, Apr. 1998.

[6] E. Villier, “Performance analysis of optimum combining with multiple
interferers in flat Rayleigh fading,”IEEE Trans. Commun., vol. 47, pp.
1503–1510, Oct. 1999.

[7] J. Cui and A. U. H. Sheikh, “Outage probability of cellular radio systems
using maximum ratio combining in the presence of multiple interferers,”
IEEE Trans. Commun., vol. 47, pp. 1121–1124, Aug. 1999.

[8] M. Abdel-Hafez and M. Safak, “Performance analysis of digital cellular
radio systems in Nakagami fading and correlated shadowing environ-
ment,” IEEE Trans. Veh. Technol., vol. 48, pp. 1381–1391, Sept. 1999.

[9] M. Schwartz, W. Bennett, and S. Stein,Communication Systems and
Techniques. New York: McGraw Hill, 1966.

[10] M. J. Juntti and M. Latva-aho, “Bit-error probability analysis of linear
receivers for CDMA systems in frequency-selective fading channels,”
IEEE Trans. Commun., vol. 47, pp. 1788–1791, Dec. 1999.

[11] Y. Ma and T. J. Lim, “Bit error probability for MDPSK and NCFSK over
arbitrary Rician fading channels,”IEEE J. Select. Areas Commun., vol.
18, pp. 2179–2189, Nov. 2000.

[12] Y. Ma, C. C. Chai, and T. J. Lim, “Bit error probability for 2 and 4 DPSK
in general Nakagami fading channels with correlated Gaussian noise,”
IEE Proc.—Commun., vol. 147, pp. 155–162, June 2000.

[13] T. Eng and L. B. Milstein, “Coherent DS-CDMA performance in
Nakagami multipath fading,”IEEE Trans. Commun., vol. 43, pp.
1134–1143, Feb./Mar./Apr. 1995.

[14] G. P. Efthymoglou, V. A. Aalo, and H. Helmken, “Performance analysis
of coherent DS-CDMA systems in a Nakagami fading channel with ar-
bitrary parameters,”IEEE Trans. Veh. Technol., vol. 46, pp. 289–297,
May 1997.

[15] K. Cheun, “Performance of direct-sequence spread-spectrum Rake re-
ceivers with random spreading sequences,”IEEE Trans. Commun., vol.
45, pp. 1130–1143, Sept. 1997.

[16] P. Y. Kam, “Bit error probabilities of MDPSK over the nonselective
Rayleigh fading channel with diversity reception,”IEEE Trans.
Commun., vol. 39, pp. 220–224, Feb. 1991.

[17] U. Hansson and T. Aulin, “Aspects on single symbol signaling on the
frequency flat Rayleigh fading channel,”IEEE Trans. Commun., vol.
47, pp. 874–883, June 1999.

[18] R. H. Clarke, “A statistical theory of mobile-radio reception,”Bell Syst.
Tech. J., vol. 47, pp. 957–1000, July/Aug. 1968.

[19] W. C. Jakes, Jr.,Microwave Mobile Communications. New York:
Wiley, 1974.

[20] Y. Ma, T. J. Lim, and C. C. Chai, “Systematic study on channel non-
symmetry for differentially coherent detection in general Rician fading
channels,”Electron. Lett., vol. 36, pp. 261–262, Feb. 2000.

[21] A. M. Mathai and S. B. Provost,Quadratic Forms in Random Variables:
Theory and Applications. New York: Marcel Dekker, 1992.

[22] Y. Ma, “Diversity reception in fading channels and CDMA multiuser
detection,” Ph.D. dissertation, National University of Singapore, 2000.

[23] W. C. Lindsey, “Error probability for Rician fading multichannel re-
ception of binary and N-ary signals,”IEEE Trans. Inform. Theory, vol.
IT-10, pp. 339–350, Oct. 1964.

[24] C. W. Helstrom, “Calculating error probabilities for intersymbol and
cochannel interference,”IEEE Trans. Commun., vol. COM-34, pp.
430–435, May 1986.

[25] , Elements of Signal Detection & Estimation. Englewood Cliffs,
NJ: Prentice-Hall, 1995.

[26] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions
With Formulas, Graphs, and Mathematical Tables, 9th ed. New York:
Dover, 1970.

[27] Y. Ma, C. C. Chai, and T. J. Lim, “Unified analysis of error probability
for MRC in correlated fading channels,”Electron. Lett., vol. 35, pp.
1314–1315, Aug. 1999.

[28] M. K. Simon and D. Divsalar, “Some new twists to problems involving
the Gaussian probability integral,”IEEE Trans. Commun., vol. 46, pp.
200–210, Feb. 1998.

[29] Y. Ma and C. C. Chai, “Unified error probability analysis for general-
ized selection combining in Nakagami fading channels,”IEEE J. Select.
Areas Commun., vol. 18, pp. 2198–2210, Nov. 2000.

[30] Q. T. Zhang, “Co-channel interference analysis for mobile radio suf-
fering lognormal shadowed Nakagami fading,”IEE Proc.—Commun.,
vol. 146, no. 1, pp. 49–54, 1999.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 16, 2009 at 11:11 from IEEE Xplore.  Restrictions apply.



MA et al.: ERROR PROBABILITY FOR COHERENT AND DIFFERENTIAL PSK OVER ARBITRARY RICIAN FADING CHANNELS 441

Yao Ma was born in Anhui, China, in 1971. He
received the B.Sc. degree from Anhui University,
China, in 1993 and the M.Sc. degree from University
of Science and Technology of China (USTC), China,
in 1996, both in electrical engineering and infor-
mation science, and the Ph.D. degree in electrical
engineering from National University of Singapore,
Singapore, in 2000. His Ph.D. dissertation concerned
the analysis of diversity reception over fading
channels, and CDMA multiuser detection schemes.

From April 2000 to July 2001, he was a Member of
Technical Staff in the Digital Communications Group at the Centre for Wireless
Communications, Singapore. Since July 2001, he has been with the Electrical
and Computer Engineering Department of the University of Toronto, Toronto,
ON, Canada, as a Post-Doctoral Fellow. His research interests include the anal-
ysis of wireless digital communications over fading channels, CDMA multiuser
detection, linear and nonlinear Kalman filtering, and ultrawideband multiple ac-
cess communications.

Teng Joon Lim received the B.E. degree from
the National University of Singapore, Singapore,
in 1992, and the Ph.D. degree from Cambridge
University, Cambridge, U.K., in 1996.

From September 1995 to November 2000, he was
a Researcher in the Centre for Wireless Communica-
tions in Singapore. He served initially as a Member
of Technical Staff, and later as leader of the Digital
Communications group. Since December 2000, he
has been an Assistant Professor at the Electrical and
Computer Engineering Department of the University

of Toronto, Toronto, ON, Canada, where he is also the Bell Canada Junior
Chair in Wireless Communications. He has published extensively in the areas
of adaptive signal processing, multi-user detection, and channel estimation.
He was the Technical Program Chair of the 7th IEEE Singapore International
Conference on Communication Systems (ICCS) 2000, and has been on
several other program committees as well. His current research interests
include space-time coding and modulation, iterative multi-user receivers, and
multi-packet reception in random access channels.

Subbarayan Pasupathy(M’73–SM’81–F’91) was
born in Chennai (Madras), India, on September 21,
1940. He received the B.E. degree in telecommuni-
cations from the University of Madras in 1963, the
M.Tech. degree in electrical engineering from the In-
dian Institute of Technology, Madras, India, in 1966,
and the M.Phil. and Ph.D. degrees in engineering and
applied science from Yale University, New Haven,
CT, in 1970 and 1972, respectively.

He joined the faculty of the University of Toronto,
Toronto, ON, Canada, in 1973 and became a Pro-

fessor of Electrical Engineering in 1983. He has served as the Chairman of the
Communications Group and as the Associate Chairman of the Department of
Electrical Engineering at the University of Toronto. His research interests are
in the areas of communication theory, digital communications, and statistical
signal processing.

Dr. Pasupathy is a Registered Professional Engineer in the Province of On-
tario. He has served as a Technical Associate Editor for theIEEE Communica-
tions Magazine(1979–1982) and as an Associate Editor for theCanadian Elec-
trical Engineering Journal(1980–1983). During 1982–1989, he was an Area
Editor for Data Communications and Modulation for the IEEE TRANSACTIONS

ON COMMUNICATIONS. Since 1984, he has been writing a regular column en-
titled “Light Traffic” for the IEEE Communications Magazine.He was elected
Fellow of the IEEE in 1991 “for contributions to bandwidth-efficient coding and
modulation schemes in digital communications.”

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 16, 2009 at 11:11 from IEEE Xplore.  Restrictions apply.


