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Abstract: This research aims to test the limits of control effectiveness for an active magnetic
bearing (AMB) system subjected to external acceleration disturbances. An adaptive output back-
stepping controller is designed to compute nonlinear control currents of the magnetic bearing by
accepting that the rotor and AMB parameters are unknown. The control currents of the electromag-
nets of the active magnetic bearing is switched according to the rotor position. The adaptive back-
stepping controller is experimentally verified in an AMB test system with vibrating base and the
results are compared with proportional integrative derivative (PID) control results for the
maximum amplitude of applicable disturbance.
1 Introduction

An active magnetic bearing (AMB) provides contact-free
suspension of a rotor; thus, friction is not present and lubri-
cation is not needed [1, 2]. Therefore the lifetime of an
AMB outperforms that of a mechanical bearing. These
characteristics make AMBs attractive for many applications
especially flywheel energy storage systems. Despite such
advantages, the stiffness of a magnetic bearing is low com-
pared with a mechanical bearing.
The safe operation of flywheels should be maintained for

any condition. Since flywheels are rotating parts with large
kinetic energy capacity depending on the size, they have
destructive potential and may cause deadly damages if
some failure occurs at high-speed spinning. For large
scale flywheel applications, earthquake like disturbances
may cause some failures in control systems. Therefore the
designed controller should be tested for such kind of
disturbances.
Nonlinear control of the active magnetic bearings has

been previously studied using different approaches. In [3],
a nonlinear control approach is proposed using differential
flatness. Input–output linearisation and sliding mode
control are applied to AMB systems in [4–6]. As a
control design approach, the nonlinear integrator backstep-
ping is propsed to solve control problems for AMB appli-
cations [7]. To reduce power losses, low-bias and
zero-bias controls of AMBs are studied in [8–11]. In this
study, an adaptive output feedback type backstepping
control is presented to achieve better performance in the
case of acceleration disturbances.
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2 Problem statement

Consider the vertically designed AMB system depicted in
Fig. 1. In this setup, the AMB system is placed on a vibrat-
ing base which is connected to a shaker for acceleration dis-
turbance. The flywheel system uses in general three AMBs
to suspend the rotor, that is two magnetic actuators in radial
direction and one in axial direction. However, the axial
bearing is not considered in the following control design
unless otherwise stated. Fig. 2 illustrates the flywheel-rotor
and placement of the radial magnetic actuators in upper and
lower locations in xGz plane. The parameters of the fly-
wheel AMB system is given in Table 1. Note that four
other magnetic actuators are also placed in yGz plane sym-
metrically, but are not shown in Fig. 2.
In most AMB systems, the controller is designed for

normal operating conditions to reduce cost and controller
complexity. Besides stability of the system, performance
measures are also taken into consideration in normal con-
ditions. But in emergency cases, it is desired that AMB
control system must maintain the stability first. Therefore
the objective of the control is to provide the stability of
the AMB system under the applicable maximum amplitude
of acceleration disturbances.
The nonlinear control defined here serves to switch the

control current of the electromagnets of the AMB according
to the rotor position. Unlike the linear control, no bias
current is employed in the proposed nonlinear control. In
an attractive type bearing configuration of a pair magnet,
when the rotor approaches one of the magnets, the coil
current in that magnet switches to zero, whereas the coil
current in the magnet on the opposite side is switched on
to generate attractive force. The switching process con-
tinues until the rotor is brought to the origin and stabilised.
The mathematical model of the flywheel AMB system is

derived and the upper and lower AMB equations are separ-
ated each other by using some assumption (see the
Appendix). After this process, each axis of the AMB
becomes independent of each other. The structure of the non-
linear switching control may be defined only for one axis.
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Using the variable transformations x1 ¼ xu and x2 ¼ _xu in
(29), the second-order system is obtained as

_x1 ¼ x2

_x2 ¼ ub1(x1) �ub3(x1)
� � u1

u3

� �
y ¼ x1

(1)

where u1 ¼ i1
2 and u3 ¼ i3

2 are the control inputs. y denotes
the output of the system. The unknown parameter u and
the nonlinear functions b1 and b3 are defined as

u ¼ auKu

b1(x1) ¼
1

(X0 � x1)
2
, b3(x1) ¼

1

(X0 þ x1)
2

(2)

Note that the nonlinear functions b1 and b3 are strictly posi-
tive functions of the state x1. It seems that (1) has multiple
inputs but in reality only one control input is effective at any
time depending on the rotor position. If (1) is rearranged as

_x1 ¼ x2

_x2 ¼ ubu

y ¼ x1

(3)

The following switching rule is necessary to realise the pro-
posed control structure

Fig. 1 Photo of the AMB system
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if x1 � 0 u ¼ u3, u1 ¼ 0, b ¼ �b3(x1)

if x1 , 0 u ¼ u1, u3 ¼ 0, b ¼ b1(x1)
(4)

3 Adaptive output backstepping

3.1 Nonlinear observer

In practice, only the displacement of the rotor is measured
using position sensors, and the velocity is not available
for the feedback. To estimate the unmeasured state x2, an
exponentially convergent observer is introduced into the
control system such as

x̂2 ¼ hþ ulþ kx1 (5)

where h and l denote the states of the filters. Also, k is a
positive parameter. The first filter is for the part of the
plant that does not contain the unknown parameter u and
the second one is for the unknown part of the plant. The
filters are defined as

ḣ ¼ �kh� k
2
x1

l̇ ¼ �klþ b(x1)u
(6)

If the initial conditions are h(0) ¼ 0 and l(0) ¼ 0, then it is
guaranteed that the estimation error e exponentially

Fig. 2 Flywheel rotor-AMB system
Table 1: Parameters of the AMB system

Symbol Meaning Value Unit

M mass of the rotor 10.78 kg

Ir moment of inertia 0.150573 kgm2

Ia polar moment of inertia 0.0275912 kgm2

Iu distance of upper AMB from the centre of mass 0.22467 m

ll distance of lower AMB from the centre of mass 0.13033 m

l1 distance of the upper sensor from the centre of mass 0.26817 m

l2 distance of the lower sensor from the center of mass 0.17409 m

K Magnetic bearing coefficient 2.463 � 1027 Nm2/A2

X0, Y0 gap between the rotor and AMB 0.5 � 1023 m

Ks Sensor gain 10 000 V/m
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converges to zero

e ¼ x2 � x̂2

ė ¼ _x2 � ḣ � ul̇ � k _x1

¼ k(hþ ulþ k x1)� k x2

¼ �ke

(7)

3.2 Control design

The adaptive backstepping controller will be designed in
detail as defined in [12]. The error between measured
rotor displacement and the reference yr(t) is defined as

z1 ¼ y� yr (8)

The derivative of z1 is obtained as

_z1 ¼ _x1 � _yr

¼ x2 � _yr (9)

Since x2 is not measured, the estimate of it will be used.
Now substituting (5) into (9), the derivative of z1 becomes

_z1 ¼ hþ ulþ kx1 þ e (10)

Note that the reference input yr is zero for the rotor magnetic
bearing system. The aim of the control here is to bring the
rotor to the origin or zero axes. Therefore, to force the
error to zero means to force the rotor to the origin. In
(10), the only variable that contains control input u is l.
Thus, l may be used to define the second error variable
such as

z2 ¼ l� a1 (11)

where a1 is a stabilising function and is chosen as

a1 ¼ r̂ (� c1z1 � d1z1 � k x1 � h) ¼ r̂ ā1 (12)

where c1 . 0, d1 . 0. Note that to eliminate l in (10), the
stabilising function a1 is multiplied by r̂ which is an esti-
mate of the parameter r ¼ 1/u. Moreover, unlike in the
integrator backstepping procedure, d1 is added to counteract
the estimation error e. Now, the derivative of z1 becomes

_z1 ¼ hþ u(z2 þ a1)þ k x1 þ e

¼ hþ u[z2 þ (r� r̃)ā1]þ k x1 þ e

¼ uz2 � c1z1 � d1z1 � ur̃ā1 þ e (13)

where r̂ ¼ r� r̃ . Here, r̃ denotes the error in the estimation
of r̂ . A candidate Lyapunov function for the first error vari-
able is defined as

V1 ¼
1

2
z21 þ

1

2g
u(r� r̂)2 þ

1

2kd1
e2 (14)

where g is the adaptation gain. The derivative of V1 is
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obtained as

_V 1 ¼ z1_z1 �
1

g
u(r� r̂) _̂r þ

1

kd1
eė

¼ uz1z2 � c1z
2
1 � u(r� r̂) ā1z1 þ

1

g
_̂r

� �

� d1 z1 �
1

2d1
e

� �2

þ
1

4d1
e2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�d1z
2
1
þz1e

�
1

d1
e2

� uz1z2 � c1z
2
1 � u(r� r̂) ā1z1 þ

1

g
_̂r

� �
�

3

4d1
e2

(15)

The u(r� r̂) term in the above inequality can be eliminated
using the update law as follows

_̂r ¼ �gā1z1 (16)

Since the term uz1z2 remained in (15), a global stability con-
dition is not satisfied in this step. The second step is to
expand the control design to include the error variable z2.
To this aim, the derivative of the second error variable is
given as

_z2 ¼
_l� ȧ1 (17)

Here, the stabilising function a1 is a function of y, h and r̂ .
The derivative of a1 is obtained as

ȧ1 ¼
@a1

@y
_yþ

@a1

@h
ḣ þ

@a1

@r̂
_̂r (18)

Substituting (6) and (18) into (17), the derivative of z2
becomes

_z2 ¼ �klþ b(x1)u�
@a1

@y
(hþ ulþ k x1 þ e)

�
@a1

@h
(� khþ k2x1)�

@a1

@r̂
_̂r (19)

Equation (19) is not a desired form because the unknown
parameter u appears. Moreover, the disturbance e is multi-
plied by the nonlinear term (@a1=@y). To employ nonlinear
damping and to eliminate the unknown parameter, (19) is
equalised as follows

� c2z2 � û z1 � d2
@a1

@y

� �2

z2 �
@a1

@y
e�

@a1

@y
ũ l

¼ �klþ b(x1)u�
@a1

@y
(hþ ulþ kx1 þ e)

�
@a1

@h
(� kh� k

2
x1)�

@a1

@r̂
_̂r (20)

where û is the estimate of the unknown parameter u. Also, ũ
represents error in this estimation. From (20), the control
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input u is obtained as

u ¼
1

b(x1)
�c2z2 � d2

@a1

@y

� �2

z2 � û z1

"

þ klþ
@a1

@y
(hþ û lþ kx1)

þ
@a1

@h
(� kh� k

2
x1)þ

@a1

@r̂
_̂r

#
(21)

Substituting (21) into (19), the derivative of z2 becomes

_z2 ¼ �c2z2 � d2
@a1

@y

� �2

z2 � (u� ũ )z1

�
@a1

@y
ũ l�

@a1

@y
e (22)

The Lyapunov function is augmented for the second error
variable z2 as follows

V2 ¼ V1 þ
1

2
z22 þ

1

2g
(u� û )2 þ

1

2kd2
e2 (23)

The derivative of V2 is derived as

_V 2 ¼
_V 1 þ z2_z2 �

1

g
(u� û )

_̂
u þ

1

kd2
eė

¼ �c1z
2
1 � c2z

2
2 � d2

@a1

@y
z2 �

1

2d2
e

� �2

þ
1

4d2
e2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d2(
@a1

@y )
2
z
2
2 �

@a1

@y ez2

�
1

d2
e2 �

3

4d1
e2 � �c1z

2
1 � c2z

2
2 þ (u� û )

� z1z2 �
@a1

@y
lz2 �

1

g

_̂
u

� �
�

3

4d1
þ

3

4d2

� �
e2 (24)

where c2 . 0, d2 . 0. The unknown part of (u� û ) in (24)
is eliminated using the update law

_̂
u ¼ g z1z2 �

@a1

@y
lz2

� �
(25)

It is clear that a global stability is maintained in the final
Lyapunov function. The control currents i1 and i3 can be
computed from the control input u obtained in (21).

4 Experiments

A feedback control system is built using a high-speed Texas
instrument digital signal processor (TMS320C6701) to realise
experiments. The control system is a multi-input multi-output
structure with four displacements measured by four eddy
current position sensors and eight computed control current
signals for actuators. The control inputs are supplied to elec-
tromagnets through D/A converters and power amplifiers.
In rotor-AMB systems, trajectories of the geometric

centre point of the rotor and control currents are generally
used to evaluate the control performance. Since the limits
of the control effectiveness are aimed, the base is subjected
to acceleration disturbance at a fixed frequency of 10 Hz but
the amplitude of the disturbance is continuously increased
IET Control Theory Appl., Vol. 1, No. 4, July 2007
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up to the touch down position of the rotor. Note that the
AMB setup is placed on the base to make 458 of angle
with the axis of actuators so that the disturbance effect is
equally distributed both x and y directions. The results are
obtained for the maximum amplitude of the disturbance.
In this study, the results of lower actuator location are pre-
sented because the disturbance effect is large compared to
upper AMB location.
The flywheel AMB system is rotated up to 60 Hz and

acceleration disturbance is applied to the base at 50 Hz.
Figs. 3 and 4 show the displacement and orbits of the rotor
for backstepping adaptive control case (v ¼ 50), respectively.
The control currents of the lower actuator are presented in
Fig. 5. The control current characteristics reflect the proposed
nonlinear switching control principle clearly. From Figs. 6–8,
the PID control results are presented for the same location of
the actuator. For comparison of both cases, the maximum
applied acceleration disturbance is shown in Fig. 9. As seen
in this figure, the adaptive control maintains the stability of
AMB system even the amplitude of disturbance approxi-
mately two times higher than PID control case. The control
currents are almost same level for both case. Note that PID
is a linear controller and a 0.5 A bias current is applied to
the magnetic actuators in PID control.

Fig. 3 Displacement of the rotor (adaptive control)

Fig. 4 Orbit of the rotor (adaptive control)

Fig. 5 Control currents (adaptive control)
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5 Conclusions

The design of adaptive output backstepping control is pre-
sented for a nonlinear switching AMB system. The non-
linear observers are used to provide the estimate of the
unmeasured state with an exponentially convergent error

Fig. 6 Displacement of the rotor (PID control)

Fig. 7 Orbit of the rotor (PID control)

Fig. 8 Control currents (PID control)

Fig. 9 Acceleration disturbance
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decay since the full state of the control system is not avail-
able for the feedback. The control systems of AMB setup
are tested experimentally with base acceleration disturbance
at different rotational speeds. The bearable acceleration dis-
turbance level of adaptive control was two times higher than
PID control.
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7 Appendix

The equation of motion of the rigid rotor AMB system
depicted in Fig. 2 is derived as

M €xg ¼ fxu þ fxl

Irü y ¼ �Iavu̇ x þ lu fxu � ll fxl

M €yg ¼ fyu þ fyl

Irü x ¼ Iavu̇ y � lu fyu þ ll fyl (26)

where �Iavu̇ x and Iavu̇ y are gyroscopic terms. Since the
polar moment of inertia is small, gyroscopic effects can
be ignored in modelling and control design. The control
forces are

fxu ¼ ( f1 � f3), fxl ¼ ( f5 � f7)

fyu ¼ ( f2 � f4), fyl ¼ ( f6 � f8) (27)

The equations of motion obtained in (26) are derived
according to the movement of the rotor’s centre of mass.
On the other hand, the measured signals are the displace-
ments of the rotor at the lower and upper sensor locations.
Since sensor locations are distinct from the mass centre,
the computation of the displacements of the rotor’s center
of mass and angular displacements are necessary during
control operation. Instead of computing the displacements
xg, yg, uy and ux, the computation of the displacements of
the rotor at the magnet locations makes the control system
IET Control Theory Appl., Vol. 1, No. 4, July 2007
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collocated. To this aim, the equations of the rotor AMB
system may be transformed to the actuator locations. The
displacement at the upper AMB location for the x direction
is obtained as

xu ¼ xg þ luuy (28)

Taking the double derivative of the above equation and sub-
stituting (26) and (27) into the obtained derivations, the
equations are derived as

€xu ¼ €xg þ luü y ¼
1

M
f1 �

1

M
f3 þ lu

1

Ir
f1lu �

1

Irf3lu

� �

€xu ¼ au
Kui

2
1

(X0 � xu)
2
�

Kui
2
3

(X0 þ xu)
2

� � (29)

where

au ¼
1

M
þ
l
2
u

Ir

� �
(30)

The transformation of the equations for the location of
lower AMB is realised with the same derivation procedure
and follows as

xl ¼ xg � lluy

€xl ¼ €xg � llü y ¼
1

M
f5 �

1

M
f7 � ll �

1

Ir
f5ll þ

1

Ir
f7ll

� �
(31)

€xl ¼ al
Kli

2
5

(X0 � xl)
2
�

Kli
2
7

(X0 þ xl)
2

� �
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where

al ¼
1

M
þ
l
2
l

Ir

� �
(32)

Similarly, the displacement in the y direction is given as

yu ¼ yg � luux

yl ¼ yg þ llux

(33)

Repeating the same procedure, the transformed equations
are derived as

€yu ¼ au
Kui

2
2

(Y0 � yu)
2
�

Kui
2
4

(Y0 þ yu)
2

� �

€yl ¼ al
Kli

2
6

(Y0 � yl)
2
�

Kli
2
8

(Y0 þ yl)
2

� � (34)

Note that in the above derivation process only the
forces that directly effect the considered points are taken
into account. When the transformation is done for the
upper actuator location (xu, yu) on the rotor, the upper
AMB forces f1 and f3 are considered and f5, f7 are taken
as zero. For the lower actuator location (xl, yl), the
forces f5 and f7 are assumed to be effective and f1, f3
are taken as zero.
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